My-library.info
Все категории

Алексей Воронин - Мошенничество в платежной сфере. Бизнес-энциклопедия

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Алексей Воронин - Мошенничество в платежной сфере. Бизнес-энциклопедия. Жанр: Банковское дело издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мошенничество в платежной сфере. Бизнес-энциклопедия
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 сентябрь 2019
Количество просмотров:
496
Текст:
Ознакомительная версия
Читать онлайн
Алексей Воронин - Мошенничество в платежной сфере. Бизнес-энциклопедия

Алексей Воронин - Мошенничество в платежной сфере. Бизнес-энциклопедия краткое содержание

Алексей Воронин - Мошенничество в платежной сфере. Бизнес-энциклопедия - описание и краткое содержание, автор Алексей Воронин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Активное использование информационных технологий в платежной сфере привело к появлению разнообразных специфических форм мошенничества, основанных на применении достижений современных ИТ. Мошенничество с банковскими картами, электронными деньгами и при обслуживании клиентов в системах дистанционного банковского обслуживания; способы борьбы с противоправными действиями злоумышленников; вопросы нормативного регулирования — эти и многие другие аспекты данной проблематики рассматриваются в бизнес-энциклопедии «Мошенничество в платежной сфере».Все материалы для книги подготовлены практикующими специалистами — экспертами в финансово-банковской сфере.Авторы: Леонид Лямин, Николай Пятиизбянцев, Антон Пухов, Павел Ревенков, Илья Сачков, Валерий Баулин, Дмитрий Волков, Максим Кузин, Ирина Лобанова. Редактор-составитель, руководитель проекта Алексей Воронин. Менеджер по рекламе Елена Балакшина.

Мошенничество в платежной сфере. Бизнес-энциклопедия читать онлайн бесплатно

Мошенничество в платежной сфере. Бизнес-энциклопедия - читать книгу онлайн бесплатно, автор Алексей Воронин
Конец ознакомительного отрывкаКупить книгу

Ознакомительная версия.

Рис. 4.3. Управление условиями мониторинга


Каждый факт мошенничества должен анализироваться относительно того, выявлен ли он был или мог бы быть выявлен с помощью СМТ. Если мошенничество было обнаружено с помощью СМТ, то, возможно, требуется уточнение заданных условий анализа транзакций для более раннего обнаружения подобных фактов и (или) снижения количества ложных срабатываний по немошенническим транзакциям. В случае если мошенничество не было выявлено, следует рассмотреть вопрос о добавлении новых условий анализа транзакций в СМТ для того, чтобы аналогичные транзакции могли быть выявлены в дальнейшем.

При изменении заданных условий мониторинга и добавлении новых необходимо оценивать следующие величины:

— степень выявления транзакций определенной схемы мошенничества;

— возможные потери по мошенническим транзакциям, которые могут возникнуть в результате их пропуска при заданных условиях мониторинга;

— количество ложных срабатываний по немошенническим транзакциям;

— нагрузка на операторов СМТ, обрабатывающих подозрительные транзакции;

— нагрузка на операторов call-центра, обеспечивающих взаимодействие с держателями карт для подтверждения транзакций.

4.3.5.5. СМТ на основе нейронных сетей

Из предыдущих разделов становится понятно, что современная СМТ обеспечивает анализ транзакций как минимум на основе правил. Если у банка есть квалифицированные специалисты, способные создавать правила и поддерживать их в актуальном состоянии, то этого часто будет достаточно для организации эффективной защиты от мошенничества в платежной сфере и поддержания рисков на приемлемом уровне.

Тем не менее очень привлекательной выглядит возможность использования аналитических моделей на основе нейронных сетей. Основными преимуществами таких моделей являются построение на основе классифицированных данных о транзакциях (мошеннических и легальных) и их адаптивность с учетом появления информации о новых фактах мошенничества. К минусам следует отнести сложность построения, а также необходимость наличия моделей либо для каждого клиента/ТСП, либо для характерной группы клиентов/ТСП, поведение которых является достаточно типичным. Отдельно нужно строить модель мошенника либо модели для мошенничества различных типов.

Далее в данном разделе рассмотрим один из подходов к построению аналитической модели на основе нейронных сетей.

Задача, которую предстоит решить с использованием модели на основе нейронной сети, относится к распознаванию образов — следует проанализировать транзакцию и сделать вывод о ее принадлежности классу мошеннических, либо к классу легальных транзакций. Нейронные сети, используемые для распознавания, относятся к классу многослойных персептронов (рис. 4.4).


Рис. 4.4. Многослойный персептрон с одним промежуточным слоем


Обучение такой сети происходит следующим образом: каждой входной модели транзакции (вектору информационных признаков транзакции) ставится в соответствие целевое значение О, если транзакция легальная, и 1, если транзакция нелегальная (мошенническая). Вместе они составляют обучающую пару. Для обучения требуется несколько обучающих пар, обычно не меньше произведения количества нейронов в слоях сети. По входной модели транзакции вычисляется выход сети и сравнивается с соответствующим целевым значением. Разность между выходом сети и целевым значением используется для изменения весов дуг, связывающих нейроны в слоях. Эти изменения происходят в соответствии с некоторым алгоритмом, стремящимся минимизировать ошибку. Векторы информационных признаков из обучающей выборки последовательно подаются на вход сети, ошибки вычисляются и веса подстраиваются до тех пор, пока ошибка не достигнет заданного уровня. Следует отметить, что выходным значением может быть не 0 или 1, а, например, число в интервале от 0 до 1 включительно.

Этот процесс зависит от огромного числа факторов и далеко не всегда приводит к желаемому результату. Фактически используется метод проб и ошибок. Требуется опыт работы с нейронными сетями вообще и, в частности, с моделями транзакций, чтобы получить приемлемый результат.

В рассматриваемом подходе исходные признаки транзакции являются отправной точкой. На их основе получаются расширенные признаки транзакции, после чего формируются входные данные для нейронной сети — информационные признаки транзакции.


Таблица 4.9. Исходные признаки транзакции





Относительно представленных в таблице 4.9 данных следует сделать ряд замечаний:

1. Множества мошеннических и легальных транзакций должны быть четко разделимыми, что является необходимым условием обучения нейронной сети.

2. Многие мошеннические транзакции могут быть выявлены только при анализе последовательности транзакций, только по одной сделать вывод о ее мошенническом характере часто бывает невозможно.


Из этого следует, что если множества легальных и мошеннических транзакций плохо разделимы, что встречается достаточно часто (мошеннические транзакции, например, в Интернете на I-Times или Blizzard для одного клиента могут быть вполне типичными для другого), то обучить сеть на полном наборе таких «неразделяемых» данных не получится. Именно поэтому создаются отдельные модели для каждого клиента или каждой карты/терминала, что позволяет учесть особенности транзакций по конкретной карте или конкретному терминалу.

Второе замечание приводит к необходимости расширения набора признаков, которые следует использовать для обучения нейронной сети. Пример набора таких расширенных, то есть не содержащихся непосредственно в данных текущей транзакции, признаков приведен в таблице 4.10.


Таблица 4.10. Расширенные признаки транзакции




Нейронная сеть работает с числовыми значениями, поэтому на ее вход необходимо подавать соответствующие величины. Исходные и расширенные признаки транзакции следует преобразовать в числа, которые будут являться входными значениями для нейронной сети. Вариантами преобразования признаков транзакции может быть такое, которое дает бинарные значения (например, вход сети «транзакция в банкомате» может принимать значения 1 или 0) или действительные числа (например, отношение общей суммы покупок в ТСП за сутки к среднемесячному суточному значению по карте данного клиента или карточного продукта).

Число внутренних слоев может быть подобрано экспериментально, но рекомендуется выбирать не большое их число (2–3), иначе такая топология сети может препятствовать обучению сети. Так, проводимые эксперименты с многослойными нейронными сетями прямого распространения показывали неплохие результаты (сеть обучалась, ошибка не превышала заданной пороговой величины) при наличии двух скрытых слоев.

В СМТ аналитическую модель на основе нейронных сетей можно использовать совместно с другими методами. Например, так, как показано на рисунке 4.5. Первым шагом анализа эмитентской транзакции является извлечение профиля клиента (это может быть статистический профиль, построенный без привлечения методов нейронных сетей) и оценка транзакции на соответствие этому профилю. Такая проверка позволяет учесть характерные транзакции для клиента и снизить число ложных срабатываний на легальных транзакциях, которые для других клиентов могут являться подозрительными на предмет их мошеннического характера. Если транзакция соответствует профилю, то можно считать ее не подозрительной, то есть легальной.



Рис. 4.5. Комбинированная оценка эмитентской транзакции


Если транзакция не соответствует профилю клиента, то на втором шаге проводится оценка транзакции по модели мошенничества. Такая модель может быть единой в СМТ либо их может быть несколько для мошеннических транзакций разных типов — в любом случае ранее выявленные факты несанкционированных операций по другим картам служат сигналом к тому, что и данную транзакцию следует рассматривать как подозрительную. Если шаблон мошеннического поведения применим к данной транзакции — она считается подозрительной (мошеннической).

Третьим шагом является оценка транзакции по модели нейронной сети — ни легального, ни мошеннического характера у данной транзакции не выявлено, значит, следует провести нечеткую оценку с использованием нейросети. На основе выхода сети можно будет сделать вывод о том, считать ли транзакцию легальной или подозрительной.

Ознакомительная версия.


Алексей Воронин читать все книги автора по порядку

Алексей Воронин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мошенничество в платежной сфере. Бизнес-энциклопедия отзывы

Отзывы читателей о книге Мошенничество в платежной сфере. Бизнес-энциклопедия, автор: Алексей Воронин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.