Ознакомительная версия.
Стоп! Есть только одно исключение – ход, который ваш оппонент не сможет дублировать. Этот ход – положить вашу первую монетку точно в центр стола. Хотя в этой игре и нет «центральной клетки», есть уникальная позиция в центре стола – как только вы положили туда монету, никто другой ее уже не сможет занять.
Это еще не значит, что ход в центр стола – это хороший ход, но это уникальный первый ход, единственный ход в этой игре, когда игрок имеет возможность сделать его так, чтобы второй игрок не смог этот ход копировать.
Запомните эту мысль…
Что бы вы ни делали, другой игрок может класть свои монетки почти где угодно в начальной стадии игры. Поэтому, если у вас есть хорошая стратегия, которая также должна быть и простой стратегией, она должна быть основана на не требующих особенных раздумий парирующих ходах, которые позволят вам легко нейтрализовать любой ход противника.
Теперь обобщите все, о чем шла речь выше. Поскольку вы ходите первым, вам нужно сделать первый ход, положив свою монету прямо в центр стола. После этого вы копируете «зеркально» предыдущий ход вашего оппонента. Вы просто должны мысленно соединить прямым отрезком его монетку и центр стола, потом продолжить эту линию и положить вашу монетку на нее с противоположной стороны от центра на точно таком же расстоянии, как это сделал ваш оппонент.
Вы всегда сможете так поступать, так как вы просто дублируете последний ход вашего оппонента (если стол симметричный). В конце концов именно вашему оппоненту не удастся положить еще одну монету на стол так, чтобы он не прикасалась ни к одной из тех, которые уже лежат на столе.
Британский эксперт по головоломкам Генри И. Дьюдени вызвал при помощи этой игры ажиотаж в своем клубе в Лондоне (там они выкладывали на стол сигары). Игра описана в опубликованной в 1917 году книге Дьюдени «Математические развлечения» (Amusements in Mathematics). Версия Дьюдени с сигарами была особенно хитрой. Его уловка, которая всегда приносила ему выигрыш, была такой: он ставил сигару в самый центр стола вертикально. Следующие сигары можно было также ставить на стол вертикально или класть их на стол – это было безразлично, поскольку Дьюдени всегда мог отвечать противнику симметричным ходом. Американский соперник Дьюдени Сэм Ллойд использовал его идею, творчески ее развив: он использовал в игре куриные яйца. Чтобы яйцо могло стоять, нужно сделать небольшую вмятину на тупом конце яйца.
? Пять пиратов на острове должны разделить между собой сотню золотых монет…
Насколько нам известно, у пиратов равные права на монеты. Простейший план – поделить монеты поровну на пять частей. Тогда каждый получит по двадцать монет. Что плохого в таком решении?
В общем ничего, за исключением того, что вас могут убить. Вы предложите такое решение, а другие четыре пирата могут подумать, что двадцать монет – это хорошее решение, но двадцать пять монет – еще лучше. Именно столько они и получат, если проголосуют против вашего плана и убьют вас. Потом они снова начнут делить ту же сотню монет, но пиратов теперь будет только четверо.
Вы можете до посинения спорить, утверждая, что поделить добычу поровну – это самый честный план, но в условии головоломки ничего не говорится о том, что пираты – люди честные. Честность – это обычно не самое нужное пиратам качество. Причем отвергнуто будет не только первое предложение поделить все поровну: то же случится и со следующими подобными предложениями. Ведь лучше делить добычу на троих, чем на четверых? А на двоих лучше, чем на троих? Вам понятно, к чему это все приведет?
Эта загадка напоминает телевизионное шоу «Последний герой». В этом шоу его участники голосуют за то, кого из соперников выгнать с острова, надеясь, что именно они останутся его последним обитателем и выиграют денежный приз. Участники этого шоу обычно стремятся к победе, формируя кратковременные коалиции. Сходный подход применяется и здесь. Поскольку вы рискуете своей жизнью, а не просто потерей возможности стать на пятнадцать минут «звездой экрана», вы хотите быть стопроцентно уверены, что ваш план раздела добычи будет принят.
Эта головоломка – еще одно упражнение в рекурсивных рассуждениях. Чтобы найти решение, нужно понять, что ситуацию с n пиратов можно анализировать на основе ситуации с n – 1 пиратов и т. д., пока вы не доберетесь до «базовой ситуации», решение в которой будет абсолютно ясным.
Базовая ситуация – это один выживший пират. Очевидно, что единственный пират предложит отдать ему все монеты. Ход сделан!
А что если пиратов двое? Старшему из них придется предложить, как делить добычу. В условии головоломки говорится, что предложение принимается, если «по крайней мере половина пиратов» за него проголосует. Это значит, что достаточно одного голоса старшего пирата, чтобы предложение было принято. Следовательно, если пиратов всего двое, то старшему из них бояться нечего, и он может не беспокоиться о том, что думает его товарищ. Будучи жадным негодяем, старший пират предложит отдать все сто монет ему. Результаты голосования будут такими: один голос «за» и один «против» – это значит, что предложение будет принято.
Может показаться, что старший пират всегда получит то, чего он хочет. Не совсем так. Представьте, что он решил воспользоваться тем же трюком, если пиратов трое. Давайте пронумеруем пиратов, начиная с самого младшего: № 1, № 2, № 3. План раздела добычи должен предложить номер 3. Если он предложит такой план: «Все достается мне, а вы, ребята, ничего не получите», то следующий пират в этой последовательности (№ 2) точно проголосует против подобного предложения. Пират № 2 знает, что он сам получит все, если останутся только два пирата после того, как № 3 будет убит. Решающим оказывается голос пирата № 1. Он ничего не получает, если проголосует за план пирата № 3, но также ничего не получит, если проголосует против, если останутся только два пирата. У него нет никаких причин, чтобы предпочесть один вариант другому.
Итак, если № 3 умен, как это предполагается в головоломках, он попытается получить поддержку пирата № 1. Нужно также учесть, что пират № 3 жадный, и он готов отдать другому пирату только необходимый минимум. Логичным предложением со стороны пирата № 3 будет дать № 1 одну золотую монету, № 2 – ничего, а ему самому – оставшиеся девяносто девять монет! Поскольку № 1 также рассуждаете логично, но поймет, что и эти жалкие гроши лучше, чем ничего, а ведь он ничего не получит, если пират № 3 будет убит. Пират № 1 проголосует за план раздела добычи (как и № 3, конечно), и это предложение будет принято двумя голосами против одного несмотря на все проклятия накачавшегося с горя ромом пирата № 2.
Ознакомительная версия.