My-library.info
Все категории

У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ. Жанр: Программирование издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
17 сентябрь 2019
Количество просмотров:
381
Читать онлайн
У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ краткое содержание

У Клоксин - ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - описание и краткое содержание, автор У Клоксин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга английских специалистов, содержащая описание основ логического программирования и особенностей языка Пролог – базового языка ЭВМ пятого поколения. Области применения этого языка связаны с разработкой экспертных систем, интеллектуальных баз данных, обработкой естественного языка, разработкой компиляторов ЭВМ. Книга полезна для первого ознакомления с языком Пролог.

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ читать онлайн бесплатно

ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ - читать книгу онлайн бесплатно, автор У Клоксин

• Неконкретизированная переменная соответствует любому объекту. Этот объект становится значением переменной.

• Целое число или атом соответствуют только самим себе.

• Между структурами можно установить соответствие, только если они имеют одинаковый функтор, одинаковое число параметров и соответствующие параметры соответствуют друг другу.

Особым случаем является установление соответствия между двумя неконкретизированными переменными. В этом случае мы говорим, что переменные сцеплены. Две сцепленные переменные обладают следующим свойством: как только одна из них принимает конкретное значение, то же самое конкретное значение принимает и другая.

Если читатель заметил сходство между установлением соответствия и приравниванием аргументов (разд. 2.4), то он совершенно прав. Дело в том, что предикат '=' пытается сделать свои аргументы равными путем установления соответствия между ними.

Попытаемся применить на практике наши знания об операторах, арифметических действиях и установлении соответствия. Предположим, что в базе данных находятся следующие факты:


сумма(5).

сумма(З).

сумма(X+Y).


Рассмотрим вопрос:


?- сумма(2+3).


Какой из вышеприведенных фактов будет соответствовать данному запросу? Если вы думаете, что таковым будет первый факт, вам следует вернуться назад и еще раз прочесть разделы о структурах и операторах. В вопросе аргументом структуры сумма является структура с функтором + и компонентами 2 и 3. На самом деле указанной цели соответствует третий факт, при этом переменные X и Y принимают конкретные значения 2 и 3.

С другой стороны, если программист действительно хочет вычислить сумму, ему следовало бы воспользоваться предикатом is. Он должен был бы написать


?- X is 2+3.


или (в качестве развлечения) он мог бы определить предикат сложить, связывающий два целых числа и их сумму:


сложить (X, Y, Z):- Z is X+Y.


В этом определении X и Y должны быть конкретизированы, а Z неконкретизирована.

ГЛАВА 3. ИСПОЛЬЗОВАНИЕ СТРУКТУР ДАННЫХ

Оксфордский толковый словарь английского языка определяет слово «рекурсия» следующим образом:

РЕКУРСИЯ. [Теперь употребляется редко, устаревшее.] Обратное движение, возвращение.

Это определение загадочно и, по-видимому, устаревшее. В настоящее время рекурсия является очень популярным и мощным средством в области нечислового программирования. Она используется в двух случаях: для описания структур, имеющих другие структуры в качестве компонент, и для описания программ, выполнению которых предшествует выполнение их собственной копии. Иногда начинающие программисты относятся к рекурсии с подозрением, не понимая, как это можно определить некоторое отношение через само себя? В Прологе рекурсия – это нормальный и естественный способ представления структур данных и программ. Мы надеемся, что тема этой главы – рекурсия – обретает ясность удобным и ненавязчивым образом.

3.1. Структуры и деревья

Чтобы легче было понять сложную структуру, ее обычно представляют в виде дерева, в котором каждому функтору соответствует вершина, а компонентам соответствуют ветви дерева. Каждая ветвь может указывать на другую структуру, так что мы можем иметь структуры внутри структур. Обычно принято изображать дерево таким образом, чтобы корень дерева находился вверху, а ветви были направлены вниз, как это показано на рис. 3.1. Заметим, что два последних дерева имеют одинаковую форму, хотя корни и листья деревьев различны. Прежде чем читать дальше, вы должны быть уверены в том, что можете представить в виде дерева каждую из структур, с которыми вы уже сталкивались в предыдущих главах.

Предположим, у нас есть предложение «Джону нравится Мэри», и необходимо представить синтаксическую структуру этого предложения. В английском языке имеется очень простое синтаксическое правило построения предложений: предложение состоит из существительного, за которым следует глагольная группа. В свою очередь глагольная группа состоит из глагола и другого существительного. Это отношение между частями предложения может быть описано следующей структурой (которая представлена в виде дерева, приведенного на рис. 3.2): предложение(существительное, глагольная_группа(глагол, существительное)).


Рис. 3.1.

Если мы возьмем наше предложение («Джону нравится Мэри») и вставим слова из этого предложения в качестве аргументов функторов существительное и глагол в структуру предложения, то мы получим (см. рис. 3.3):

предложение(существительное(джон), глагольная_группа(глагол(нравится), существительное(мэри)))

Этот пример показывает, как можно использовать структуры в языке Пролог для представления синтаксиса очень простых предложений. В общем случае если мы знаем, какой частью речи является каждое слово в предложении, то можно записать структуру на Прологе, которая в явном виде описывает отношения между различными словами в предложении. Эта задача сама по себе представляет интересную тему исследования, и далее мы еще вернемся к вопросу о том, как, используя Пролог, заставить ЭВМ «понимать» некоторые простые предложения.

Деревья могут также применяться для графического описания переменных внутри структуры, в частности показывая, как сцеплены переменные, имеющие одинаковые имена (см. рис. 3.4).


 Рис. 3.2.

Рис. 3.3.

Рис. 3.4.

3.2. Списки

Список - довольно широко используемая структура данных в области числового программирования. Список -это упорядоченная последовательность элементов, которая может иметь произвольную длину. Признак упорядоченный указывает на то, что порядок элементов в последовательности является существенным. Элементами списка могут быть любые термы – константы, переменные, структуры, которые включают, конечно, и другие списки. Указанные свойства очень полезны в ситуации, когда мы не в состоянии заранее предсказать, насколько большим должен быть список и какую информацию он будет содержать. Более того, списки позволяют представить практически любой тип структуры, который может потребоваться при символьных вычислениях. Списки широко используются для представления деревьев синтаксического разбора, грамматик, карт городов, программ для ЭВМ и математических объектов, таких как графы, формулы и функции. Существует язык программирования – Лисп, в котором единственными доступными структурами данных являются константа и список. Однако в Прологе список – это просто один из частных видов структуры.

Списки могут быть представлены как специального вида дерево. Список – это любой пустой список, не содержащий ни одного элемента, либо структура, имеющая две компоненты: голову и хвост списка. Конец списка обычно представляют как хвост, который является пустым списком. Пустой список записывают как [] – открывающая квадратная скобка, за которой следует закрывающая квадратная скобка. Голова и хвост списка являются компонентами функтора, обозначаемого точкой '.'. Так, список, состоящий из одного элемента 'а' есть .(а, []), а его представление в виде дерева имеет вид

Аналогично список, состоящий из атомов a, b и с, мог бы быть записан как .(а,.(b,.(с,[]))), что изображается следующим образом:

Иногда функтор точка ('.') определяется как оператор, так что допустимо для Пролога два последних списка записать как а.[] и а.(b.(с.[]))). Второй список можно было бы записать просто как а.b.с.[], так как функтор точка – правоассоциативный оператор. Списки являются упорядоченными последовательностями элементов, так что список а.b отличается от списка b.а.

Некоторые любят записывать древовидные диаграммы списков в виде дерева, «растущего» слева направо, ветви которого направлены вниз. Приведенный выше список, представленный диаграммой в виде такой «виноградной лозы» выглядит так:

В этой диаграмме компонента функтора '.', соответствующая голове списка, «свисает» вниз, а компонента, соответствующая хвосту списка, «растет» вправо. Конец списка четко выделен тем, что последняя компонента – хвост списка – является пустым списком. Главное преимущество использования диаграммы для представления списка заключается в том, что она может быть записана справа налево на листе бумаги.


У Клоксин читать все книги автора по порядку

У Клоксин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ отзывы

Отзывы читателей о книге ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ, автор: У Клоксин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.