My-library.info
Все категории

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава. Жанр: Программирование год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих
Дата добавления:
19 ноябрь 2022
Количество просмотров:
88
Читать онлайн
Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава краткое содержание

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - Адитья Бхаргава - описание и краткое содержание, автор Адитья Бхаргава, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Алгоритмы - это всего лишь пошаговые алгоритмы решения задач, и большинство таких задач уже были кем-то решены, протестированы и проверены. Можно, конечно, погрузится в глубокую философию гениального Кнута, изучить многостраничные фолианты с доказательствами и обоснованиями, но хотите ли вы тратить на это свое время? Откройте великолепно иллюстрированную книгу и вы сразу поймете, что алгоритмы - это просто. А грокать алгоритмы - это веселое и увлекательное занятие.

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих читать онлайн бесплатно

Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих - читать книгу онлайн бесплатно, автор Адитья Бхаргава
друзей ваших друзей.

Каждый раз, когда вы проверяете кого-то из списка, вы добавляете в список всех его друзей.

В таком случае поиск ведется не только среди друзей, но и среди друзей друзей тоже. Напомним: нужно найти в сети хотя бы одного продавца манго. Если Алиса не продает манго, то в список добавляются ее друзья. Это означает, что со временем вы проверите всех ее друзей, а потом их друзей и т.д. С этим алгоритмом поиск рано или поздно пройдет по всей сети, пока вы все-таки не наткнетесь на продавца манго. Такой алгоритм и называется поиском в ширину.

Поиск кратчайшего пути

На всякий случай напомню два вопроса, на которые может ответить алгоритм поиска в ширину:

• тип 1: существует ли путь от узла A к узлу B? (Есть ли продавец манго в вашей сети?)

• тип 2: как выглядит кратчайший путь от узла A к узлу B? (Кто из продавцов манго находится ближе всего к вам?)

Вы уже знаете, как ответить на вопрос 1; теперь попробуем ответить на вопрос 2. Удастся ли вам найти ближайшего продавца манго? Будем считать, что ваши друзья — это связи первого уровня, а друзья друзей — связи второго уровня.

Связи первого уровня предпочтительнее связей второго уровня, связи второго уровня предпочтительнее связей третьего уровня и т.д. Отсюда следует, что поиск по контактам второго уровня не должен производиться, пока вы не будете полностью уверены в том, что среди связей первого уровня нет ни одного продавца манго. Но ведь поиск в ширину именно это и делает! Поиск в ширину распространяется от начальной точки. А это означает, что связи первого уровня будут проверены до связей второго уровня. Контрольный вопрос: кто будет проверен первым, Клэр или Анудж? Ответ: Клэр является связью первого уровня, а Анудж — связью второго уровня. Следовательно, Клэр будет проверена первой.

Также можно объяснить это иначе: связи первого уровня добавляются в список поиска раньше связей второго уровня.

Вы двигаетесь вниз по списку и проверяете каждого человека (является ли он продавцом манго). Связи первого уровня будут проверены до связей второго уровня, так что вы найдете продавца манго, ближайшего к вам. Поиск в ширину находит не только путь из A в B, но и кратчайший путь.

Обратите внимание: это условие выполняется только в том случае, если поиск осуществляется в порядке добавления людей. Другими словами, если Клэр была добавлена в список до Ануджа, то проверка Клэр должна быть выполнена до проверки Ануджа. А что произойдет, если вы проверите Ануджа раньше, чем Клэр, и оба они окажутся продавцами манго? Анудж является связью второго уровня, а Клэр — связью первого уровня. В результате будет найден продавец манго, не ближайший к вам в сети. Следовательно, проверять связи нужно в порядке их добавления. Для операций такого рода существует специальная структура данных, которая называется очередью.

Очереди

Очередь работает точно так же, как и в реальной жизни. Предположим, вы с другом стоите в очереди на автобусной остановке. Если вы стоите ближе к началу очереди, то вы первым сядете в автобус. Структура данных очереди работает аналогично. Очереди чем-то похожи на стеки: вы не можете обращаться к произвольным элементам очереди. Вместо этого поддерживаются всего две операции: постановка в очередь и извлечение из очереди.

Если вы поставите в очередь два элемента, то элемент, добавленный первым, будет извлечен из очереди раньше второго. А ведь это свойство можно использовать для реализации списка поиска! Люди, добавленные в список первыми, будут извлечены из очереди и проверены первыми.

Очередь относится к категории структур данных FIFO: First In, First Out («первым вошел, первым вышел»). А стек принадлежит к числу структур данных LIFO: Last In, First Out («последним пришел, первым вышел»).

Теперь, когда вы знаете, как работает очередь, можно переходить к реализации поиска в ширину!

Упражнения

Примените алгоритм поиска в ширину к каждому из этих графов, чтобы найти решение.

6.1 Найдите длину кратчайшего пути от начального до конечного узла.

6.2 Найдите длину кратчайшего пути от «cab» к «bat».

Реализация графа

Для начала необходимо реализовать граф на программном уровне. Граф состоит из нескольких узлов. И каждый узел соединяется с соседними узлами. Как выразить отношение типа «вы –> боб»? К счастью, вам уже известна структура данных, способная выражать отношения: хеш-таблица!

Вспомните: хеш-таблица связывает ключ со значением. В данном случае узел должен быть связан со всеми его соседями.

А вот как это записывается на Python:

graph = {}

graph["you"] = ["alice", "bob", "claire"]

Обратите внимание: элемент «вы» (you) отображается на массив. Следовательно, результатом выражения graph["you"] является массив всех ваших соседей.

Граф — всего лишь набор узлов и ребер, поэтому для представления графа на Python ничего больше не потребуется. А как насчет большего графа, например такого?

Код на языке Python выглядит так:

graph = {}

graph["you"] = ["alice", "bob", "claire"]

graph["bob"] = ["anuj", "peggy"]

graph["alice"] = ["peggy"]

graph["claire"] = ["thom", "jonny"]

graph["anuj"] = []

graph["peggy"] = []

graph["thom"] = []


Адитья Бхаргава читать все книги автора по порядку

Адитья Бхаргава - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих отзывы

Отзывы читателей о книге Грокаем алгоритмы. Иллюстрированное пособие для программистов и любопытствующих, автор: Адитья Бхаргава. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.