set condition true;
Ядро снимает блокировку и «будит» все процессы, приостановленные из-за этой блокировки, следующим образом:
set condition false;
wakeup (событие: условие «ложно»);
На Рисунке 2.9 приведен пример, в котором три процесса, A, B и C оспаривают заблокированный буфер. Переход в состояние «сна» вызывается заблокированностью буфера. Процессы, однажды запустившись, обнаруживают, что буфер заблокирован, и приостанавливают свое выполнение до наступления события, по которому буфер будет разблокирован. В конце концов блокировка с буфера снимается и все процессы «пробуждаются», переходя в состояние «готовности к выполнению». Ядро наконец выбирает один из процессов, скажем, B, для выполнения. Процесс B, выполняя цикл «while», обнаруживает, что буфер разблокирован, блокирует его и продолжает свое выполнение. Если процесс B в дальнейшем снова приостановится без снятия блокировки с буфера (например, ожидая завершения операции ввода-вывода), ядро сможет приступить к планированию выполнения других процессов. Если будет при этом выбран процесс A, этот процесс, выполняя цикл «while», обнаружит, что буфер заблокирован, и снова перейдет в состояние «сна»; возможно то же самое произойдет и с процессом C. В конце концов выполнение процесса B возобновится и блокировка с буфера будет снята, в результате чего процессы A и C получат доступ к нему. Таким образом, цикл «while-sleep» обеспечивает такое положение, при котором самое большее один процесс может иметь доступ к ресурсу.
Алгоритмы перехода в состояние «сна» и пробуждения более подробно будут рассмотрены в главе 6. Тем временем они будут считаться «неделимыми». Процесс переходит в состояние «сна» мгновенно и находится в нем до тех пор, пока не будет «разбужен». После того, как он приостанавливается, ядро системы начинает планировать выполнение следующего процесса и переключает контекст на него.
2.3 СТРУКТУРЫ ДАННЫХ ЯДРА
Большинство информационных структур ядра размещается в таблицах фиксированного размера, а не в динамически выделенной памяти. Преимущество такого подхода состоит в том, что программа ядра проста, но в ней ограничивается число элементов информационной структуры до значения, предварительно заданного при генерации системы. Если во время функционирования системы число элементов информационной структуры ядра выйдет за указанное значение, ядро не сможет динамически выделить место для новых элементов и должно сообщить об ошибке пользователю, сделавшему запрос. Если, с другой стороны, ядро сгенерировано таким образом, что выход за границы табличного пространства будет маловероятен, дополнительное табличное пространство может не понадобиться, поскольку оно не может быть использовано для других целей. Как бы то ни было, простота алгоритмов ядра представляется более важной, чем сжатие последних байтов оперативной памяти. Обычно в алгоритмах для поиска свободных мест в таблицах используются несложные циклы и этот метод более понятен и иногда более эффективен по сравнению с более сложными схемами выделения памяти.
2.4 УПРАВЛЕНИЕ СИСТЕМОЙ
К управляющим процессам, грубо говоря, относятся те процессы, которые выполняют различные функции по обеспечению благополучной работы пользователей системы. К таким функциям относятся форматирование дисков, создание новых файловых систем, восстановление разрушенных файловых систем, отладка ядра и др. С концептуальной точки зрения, между управляющими и пользовательскими процессами нет разницы. Они используют один и тот же набор обращений к операционной системе, доступный для всех. Управляющие процессы отличаются от обычных пользовательских процессов только правами и привилегиями, которыми они обладают. Например, режимы разрешения доступа к файлу могут предусматривать предоставление возможности работы с файлами для управляющих процессов и отсутствие такой возможности для обычных пользователей. Внутри системы ядро выделяет особого пользователя, именуемого суперпользователем, и наделяет его особыми привилегиями, о чем мы еще поговорим ниже. Пользователь может стать суперпользователем, если соответствующим образом зарегистрируется в системе или запустит специальную программу. Привилегии суперпользователя будут рассмотрены в следующих главах. Если сказать коротко, ядро системы не выделяет управляющие процессы в отдельный класс.
Рисунок 2.9. Многократная приостановка выполнения процессов, вызванная блокировкой
2.5 ВЫВОДЫ И ОБЗОР ПОСЛЕДУЮЩИХ ГЛАВ
В этой главе описана архитектура ядра операционной системы; его основными компонентами выступают подсистема управления файлами и подсистема управления процессами. Подсистема управления файлами управляет хранением и выборкой данных в пользовательских файлах. Файлы организованы в виде файловых систем, которые трактуются как логические устройства; физическое устройство, такое как диск, может содержать несколько логических устройств (файловых систем). Каждая файловая система имеет суперблок, в котором описывается структура и содержимое файловой системы, каждый файл в файловой системе описывается индексом, хранящим атрибуты файла. Системные операции работают с файлами, используя индексы.
Процессы находятся в различных состояниях и переходят из состояния в состояние, следуя определенным правилам перехода. В частности, процессы, выполняющиеся в режиме ядра, могут приостановить свое выполнение и перейти в состояние «сна», но ни один процесс не может перевести в это состояние другой процесс. Ядро является невыгружаемым и это означает, что процесс, выполняющийся в режиме ядра, будет продолжать свое выполнение до тех пор, пока не перейдет в состояние «сна» или пока не вернется в режим задачи. Ядро обеспечивает целостность своих информационных структур благодаря своей невыгружаемости, а также путем блокирования прерываний на время выполнения критических секций программы.
В остальных частях главы детально описываются подсистемы, изображенные на Рисунке 2.1, а также взаимодействие между ними, начиная с подсистемы управления файлами и включая подсистему управления процессами. В следующей главе рассматривается буфер сверхоперативной памяти (кеш) и описываются алгоритмы управления буфером, используемые в главах 4, 5 и 7. В главе 4 рассматриваются внутренние алгоритмы файловой системы, включая обработку индексов, структуру файлов, преобразование имени пути в индекс. В главе 5 рассматриваются системные операции, которые, используя приведенные в главе 4 алгоритмы, обращаются к файловой системе, т. е. такие, как open, close, read и write. Глава 6 имеет дело с понятием контекста процесса и его адресным пространством, а глава 7 рассматривает системные операции, связанные с управлением процессами и использующие алгоритмы главы 6. Глава 8 касается планирования выполнения процессов, в главе 9 обсуждаются алгоритмы распределения памяти. Глава 10 посвящена драйверам устройств, рассмотрение которых до того откладывалось, чтобы прежде объяснить связь драйвера терминала с управлением процессами. В главе 11 представлено несколько форм взаимодействия процессов. Наконец, в последних двух главах рассматриваются вопросы, связанные с углубленным изучением особенностей системы, в частности, особенности многопроцессорных систем и распределенных систем.
2.6 УПРАЖНЕНИЯ
1. Рассмотрим следующий набор команд:
grep main a.c b.c c.c › grepout&
wc -1 ‹ grepout&
rm grepout&
Амперсанд (символ "&") в конце каждой командной строки говорит командному процессору shell о том, что команду следует выполнить на фоне, при этом shell может выполнять все командные строки параллельно. Почему это не равноценно следующей командной строке?