258. Ответ показан на рисунке.
259. На рисунке показано, каким образом можно соединить В и А, истратив 233 дюйма провода.
260. [С. Лойд приводит лишь ответы на обе части задачи, но не объясняет их получения.
Первую часть можно решить следующим образом. Пусть длина колонны и время, за которое армия проходит эту длину, равно 1. Скорость движения армии также будет равна 1. Пусть далее х – расстояние, которое проезжает курьер в обе стороны, а также его скорость. На пути в голову колонны его скорость относительно колонны будет равна х – 1. На обратном пути его относительная скорость будет равна х + 1. По отношению к колонне на пути туда и обратно всадник должен преодолеть расстояние, равное 1, и весь этот путь совершается за время, равное 1. Поэтому мы можем составить следующее уравнение: 1/ (x-1) + 1/(x+1) = 1 которое легко преобразовать к виду х2 – х = 0.
Поскольку х – положительно, то
Умножив эту величину на 50, мы и получим ответ в милях, равный приближенно 120,7. Другими словами, курьер проезжает расстояние, равное длине колонны плюс та же самая длина, умноженная на квадратный корень из двух.
Аналогичным образом можно решить и вторую часть задачи. В этом случае скорости курьера относительно движущейся армии будут соответственно равны: х-1 на пути вперед, х + 1 на пути назад и
на двух диагональных участках. (Поскольку место, с которого курьер начнет свой путь, роли не играет, мы ради простоты предполагаем, что он начинает свой путь в конце заднего ряда, а не в его середине.)
Как и прежде, каждый участок пути курьера относительно каре равен 1, а поскольку все четыре участка он проезжает за единичное время, мы можем записать:
Это уравнение можно записать в виде х4 – 4х3– 2x2+ 4х + 5 = 0, и только один его корень, равный приближенно 4,18112, удовлетворяет условиям задачи. Умножив эту величину на 50, мы получим ответ, равный 209,056 мили. – М. Г.]
261. Ответ показан на рисунке.
262. Зная, что на каждой полке содержится ровно 20 кварт, начнем решать задачу, убрав 6 маленьких банок с каждой из двух нижних полок. У нас остаются 2 большие банки на средней полке и 4 средние банки на нижней полке, откуда видно, что 1 большая банка содержит столько же джема, сколько и 2 средние.
Возвратим убранные банки, а затем удалим 2 большие банки со средней полки и их эквиваленты с верхней полки: 1 большую и 2 средние банки. При этом на верхней полке останутся 1 средняя и 3 маленькие банки, а на средней – 6 маленьких банок, откуда видно, что 1 средняя банка содержит столько же джема, сколько и 3 маленькие.
Теперь заменим все большие банки парами средних; затем заменим все средние банки тройками маленьких. При этом всего получится 54 маленькие банки. Если 54 маленькие банки содержат 60 кварт, то 1 маленькая банка будет содержать 1 1/9 кварты, средняя банка – 3 1/3 кварты, а большая – 6 2/3 кварты.
263.Кратчайшим для провода будет путь по полу, ближней и дальней стенам зала и по боковой стене. Если мы представим себе комнату в виде картонной коробки, которую можно разрезать и развернуть на плоскость, как показано на рисунке, то кратчайшим путем окажется гипотенуза прямоугольного треугольника с катетами в 39 и 15 футов. Длина такого пути окажется чуть больше 41,78 фута.
[Это лойдовский вариант известной головоломки Генри Э. Дьюдени «Паук и муха».[37] Изменив размеры комнаты, Лойд так преобразовал задачу, что в ней приходится совершенно иначе разрезать и разворачивать комнату на плоскость. – М. Г.]
264. [Хотя С. Лойд уделяет этой головоломке мало внимания и приводит ответ, не объясняя способа решения, это одна из наиболее интересных задач в его сборнике, где приходится сочетать алгебраические и диофантовы методы.
Один из способов решения состоит в следующем. Пусть х – число первоначально купленных щенков, а также число крыс. Число щенков среди семи оставшихся животных обозначим через у, тогда число оставшихся крыс будет равно 7 – у. Число проданных щенков (по 2,2 бита за каждого, учитывая 10 %-ную надбавку) будет х – у, а число проданных крыс (по 2,2 бита пара, или по 1,1 бита за штуку) составит х – 7 – у.
Выражая условия задачи в форме уравнений и упрощая их, мы приходим к следующему диофантову уравнению с двумя неизвестными, которое нужно решить в целых числах: 3х= 11у+77.
Кроме того, нам известно, что у не превосходит 7.
Испробовав 7 возможных значений у, мы находим, что только при у = 5 и 2 величина х оказывается положительной. Эти значения привели бы к двум различным решениям задачи, если бы не то обстоятельство, что крысы покупались парами. Если у = 2, то число купленных крыс, 33, оказалось бы нечетным. Следовательно, мы должны исключить эту возможность и сделать вывод, что у =5.
Теперь можно восстановить всю картину. Торговец купил 44 щенка и 22 пары крыс, заплатив всего 132 бита. Он продал 39 щенков и 21 пару крыс, за которых получил 132 бита. У него осталось 5 щенков ценой в 11 битов (с учетом надбавки) и 2 крысы ценой в 2,2 бита. Цена всех 7 животных составила, таким образом, 13,2 бита, что как раз и равно 10 % от 132 битов. – М. Г.]
265. Мы должны принять, что Робинсон, внеся 2500 долларов, оплатил третью часть капитала фирмы «Браун энд Джонс», который, следовательно, до вступления в дело Робинсона составлял 7500 долларов. Поскольку доля Брауна в 1 1/2 раза превышала долю Джонса, то доля Брауна составляла 4500 долларов, а доля Джонса – 3000 долларов. Взнос Робинсона в 2500 долларов следовало разделить таким образом, чтобы доли всех партнеров оказались равными при прежнем суммарном капитале, то есть составляли 2500 долларов. Значит, Браун получил из взноса Робинсона 2000 долларов, а Джонс – 500 долларов.
266. Кусок миссис Хогэн содержал 58 1/3 фута, а в куске Мэри О'Нейл было 41 2/3 фута.
267. Одна корова стоила 15, другая – 50 долларов.
268. [Эта головоломка С. Лойда представляет собой разновидность известной задачи, которую можно встретить во многих учебниках. (Обычно в ней речь идет о человеке в лодке, который гребет до некоторой точки на берегу, где высаживается, а потом идет к цели с большей скоростью.)
Задачу можно решить следующим образом. Обозначим через х расстояние от поворота дороги до того места, где лошади перепрыгивают через стену; тогда расстояние от этого места до столба с отметкой «1 миля» равно 1-х. Мы знаем, что скорость лошади составляет 35 миль в час по дороге и 26 /4 мили в час по рыхлому грунту. Общее время, затраченное на такой срезанный путь, будет равно
Вопрос состоит в том, при каком значении х эта величина будет минимальной? Дифференцируя данное выражение по х и приравнивая его к нулю, мы находим, что это значение приблизительно равно 0,85 мили, то есть лучшее место, где следует перепрыгнуть через изгородь, расположено в 0,15 (или чуть более У7) мили от столба с отметкой «1 миля». – М. Г.]
269. Десять монет можно расположить так, как показано на рисунке, в результате чего получится 16 рядов с четным числом монет.
270. [Если мы через х обозначим деньги миссис Смит, а через у – деньги ее супруга, то цена рощи окажется равной у/3, а также х/4. А нам известно, что 3х/4 +у=5000 и2у/3 + х=5000.
Из этих уравнений мы находим, что у мистера Смита было 2500 долларов, а у его жены – 3333 1/3 доллара, отсюда стоимость рощи составляет 833 1/3, доллара. – М. Г.]
271. Кот Виттингтона может схватить всех мышей, двигаясь по пути А – 4 – С – 1 – Y – 5 – 2 – 2 – 6 – X – 3 – Z.
Если часы бьют 6 раз за 6 с, то интервал между двумя ударами составляет 11/5 с. Тогда, чтобы пробить 11 раз, требуется 10 таких интервалов, на что уйдет 12 с.
272. [Пусть х – стоимость содержания. Мы можем составить уравнение х-34 = 13 = 1/4 – х, откуда х – 62 2/3. Мы вычитаем отсюда доход в 34 доллара и находим, что потери составили 28 2/3 доллара. – М. Г.]
273.Как Маленькая Пастушка сумела сделать из 8 брусков 3 квадрата одинаковых размеров, показано на рисунке.
274. Большой участок был разделен на 18 меньших участков.
275. Передвиньте В и С на правый край шеренги рядом с девочкой, которая держит барабан. Заполните брешь с помощью Е и F. Заполните брешь с помощью H и В. Заполните брешь с помощью А и Е.