Ознакомительная версия.
Сколько решений имеет эта задача?
Миша очень любит кошек. Увидит где-нибудь брошенного котенка, подберет его и принесет к себе. У него всегда воспитывается несколько котят; но он не любит говорить товарищам — сколько, чтобы над ним не смеялись. Бывало, спросят у него:
— Сколько у тебя теперь всех котят?
— Немного, — ответит он. — Три четверти их числа, да еще три четверти одного котенка, вот и всего котят у меня.
Товарищи думали, что он просто балагурит. А между тем Миша задавал им таким ответом задачу, которую нетрудно решить.
Попытайтесь, решите!
Крестьянка пришла на базар продавать яйца.
Первая покупательница купила у нее половину всех яиц и еще пол-яйца. Вторая покупательница взяла половину того, что осталось, и еще пол-яйца. Третья покупательница взяла одно яйцо. После этого у крестьянки ничего не осталось.
Сколько яиц она принесла на базар?
Две крестьянки пришли на базар продавать яйца. У каждой было по 30 яиц. Одна крестьянка продавала яйца парами — по 5 копеек пара. Другая продавала их тройками — по 5 копеек тройка. Когда все яйца были проданы, крестьянки попросили прохожего сосчитать выручку — сами они не умели. Прохожий взял у них выручку и объяснил крестьянкам:
— Одна из вас продавала два яйца за 5 копеек, другая — три яйца за 5 копеек. Короче сказать, вы продавали пяток яиц по гривеннику. Всех яиц у вас было 60, т. е. 12 пятаков. Значит, вы выручили 12 гривенников, или 1 рубль 20 копеек. Получите же их.
И прохожий отсчитал им из выручки 1 рубль 20 копеек. А оставшийся пятак положил себе в карман. Откуда же взялся этот лишний пятак?
Часы отбивают три удара в течение трех секунд. Сколько секунд они будут бить 7 ударов?
В квартире держали несколько совершенно одинаковых кошек; у одной из них родились котята. Стали их взвешивать, и оказалось следующее:
Четыре кошки и три котенка весят вместе 15 килограммов.
Три кошки и четыре котенка — 13 килограммов.
Можете ли вы определить, сколько весили в отдельности каждая кошка и каждый котенок?
Взрослые кошки были одинакового веса, котята — тоже.
Последняя задача этого раздела — шуточная: полузадача-полуфокус.
Составьте из спичек квадрат с девятью клетками и положите в каждую клетку по монете так, чтобы в каждом лежачем и стоячем ряду лежало шесть копеек. На рисунке показано, как должны быть расположены монеты.
Теперь задайте товарищам задачу: не двигая монеты, обведенной кружком, изменить расположение монет так, чтобы в лежачих и стоячих рядах было по-прежнему по шесть копеек.
Вам скажут, что это неисполнимо. Но с помощью маленькой уловки вы совершаете это невозможное дело: запретной монеты вы не трогаете, но весь нижний ряд перекладываете наверх. Расположение изменилось, а монета в кружке не сдвинулась с места!
Рассчитать, сколько лет каждому, нетрудно. Ясно, что сын старше внука в семь раз, а дед — в 12 раз. Если бы внуку был один год, сыну было бы семь лет, деду — 12 лет, а всем троим вместе — 20 лет. Это ровно в 5 раз меньше, чем на самом деле. Значит, в действительности внуку 5 лет, сыну — 35 и деду — 60 лет.
Проверим: 5 + 35 + 60 = 100.
Всех детей семь: шесть сыновей и одна дочь. (Обычно же отвечают, что детей 12; но тогда у каждого сына было бы шесть сестер, а не одна.)
Через 10 суток и 1 день. За 10 суток улитка поднимется на 10 метров, по 1 метру в сутки; в течение же следующего дня она всползет еще на 5 метров, т. е. достигнет верхушки дерева. (Обыкновенно неправильно отвечают: «через 15 суток».)
Ни брат, ни сестра не старше: они близнецы, и каждому из них по шесть лет. Действительно: (6 + 2): (6–2) = 2; (6 + 3): (6–3) = 3. Возраст находят простым расчетом: через два года мальчик будет на четыре года старше, чем два года назад, и притом вдвое старше; значит, четыре года — это возраст его два года назад, и следовательно, сейчас ему 4 + 2 = 6 лет. Таков же и возраст девочки.
Крестьянин ничего не выгадал, а потерял. На вторую половину дороги он употребил столько времени, сколько отняло бы у него все путешествие в город пешком. Значит, он выгадать во времени не может, а должен потерять. Потерял он 15-ю долю того времени, какое нужно, чтобы пройти пешком половину дороги.
Дело объясняется очень просто. Село за стол не четверо, а только трое: дед, его сын и внук. Дед и сын — отцы, а сын и внук — сыновья: дед — отец сына, внук — сын отца.
Часто отвечают: в 1,5 × 5, т. е. в 7,5 минуты. При этом забывают, что последний разрез даст два метровых обрубка. Значит, распиливать пятиметровое бревно поперек придется не пять, а четыре раза; на это уйдет всего 1,5 × 4 = 6 минут.
Всех семеро: четыре брата и три сестры. У каждого брата три брата и три сестры; у каждой сестры — четыре брата и две сестры.
Эта старинная народная задача решается так. Спросим себя: на сколько больше галок для заполнения мест на палках нужно было бы иметь во второй раз? Легко сообразить: в первом случае для одной галки не хватило места, во втором же сидели все галки и еще двух не хватило. Значит, чтобы занять все палки, нужно во второй раз иметь на 1 + 2, т. е. на три галки больше, чем в первый. Садится же на каждую палку на одну птицу больше. Ясно, что всех палок было три. Посадим на каждую палку по галке и прибавим еще одну — получим число птиц: 4.
Итак, вот ответ на вопрос задачи: четыре галки, три палки.
Из того, что передача одного яблока уравнивает их количество у обоих школьников, следует, что у одного на два яблока больше, чем у другого.
Если от меньшего числа отнять одно яблоко и прибавить к большему числу, то разница увеличится еще на два и станет равна четырем. Мы знаем, что тогда большее число будет равно двойному меньшему. Значит, меньшее число тогда будет 4, а большее 8. До передачи одного яблока у одного школьника было 8–1 = 7, а у другого 4+1 = 5.
Проверим, становятся ли числа равными, если от большего отнять одно яблоко и прибавить к меньшему:
7 — 1 = 6; 5 + 1 = 6.
Итак, у одного школьника было 7 яблок, а у другого — 5.
Вы, вероятно, решили, что пряжка стоит 8 копеек. Если так, то вы ошиблись. Ведь тогда пояс был бы дороже пряжки не на 60 копеек, а всего на 52 копейки.
Правильный ответ: цена пряжки 4 копейки. Тогда пояс стоит 68 — 4 = 64 копейки, т. е. на 60 копеек дороже пряжки.
Среди школьников наверняка имеются даже не двое, а целые десятки ребят с одинаковым количеством волос. Это следует из того, что число всех школьников больше, чем число волос на голове каждого из них. Школьников с различным числом волос может быть не более двухсот тысяч.
Сколько же волос у двести тысяч первого школьника? Конечно, одно из тех чисел, какое уже насчитывалось у кого-нибудь из первых двухсот тысяч школьников.
Сравнивая первую и третью полку, мы замечаем, что они отличаются друг от друга следующим: на третьей полке один лишний сосуд среднего размера, зато нет трех малых сосудов. А так как общая вместимость сосудов каждой полки одинакова, то, очевидно, вместимость одного среднего сосуда равна вместимости трех малых. Итак, средний сосуд вмещает три стакана.
Теперь остается определить вместимость большого сосуда. Заменив на первой полке средние сосуды соответствующим числом стаканов, мы получаем один большой сосуд и двенадцать стаканов. Сравнив это со второй полкой, соображаем, что один большой сосуд вмещает шесть стаканов.
Значит, фигура заключает 55 различно расположенных квадратов пяти различных размеров.
В тот же день Алеша убедиться в этом никак не мог. Даже если бы он считал круглые сутки беспрерывно, то и тогда насчитал бы в одни сутки только 86 400 клеточек. Ведь в 24 часах всего 86 400 секунд. Ему надо было бы считать без перерывов более десяти дней, а по восемь часов в сутки — целый месяц, чтобы досчитать до миллиона.
101. Как поделить яблоки?
Ознакомительная версия.