Рис. 80. Как приготовить бумажную ленту к склеиванию.
Рис. 81. Как склеить бумажную ленту в кольцо.
Вы показываете эту заранее приготовленную ленту своим гостям и спрашиваете их:
– Что получится, если ленту разрезать вдоль посередине? Всякий ответит вам, что, очевидно, из одного кольца получатся два – ничего другого и ожидать нельзя.
Но результат оказывается неожиданным. Как вы думаете, что получится?
85. Еще неожиданнее
Еще неожиданнее будет результат при разрезании другого бумажного кольца, склеенного несколько иным образом. А именно, конец закручивают, как и раньше, но не два раза, а один раз (3-й угол при склеивании придется против 2-го угла).
Что получится, если разрезать такую ленту вдоль посередине (рис. 82)?
Результат поразит вас!
Рис. 82. Кольцо, склеенное из бумажной ленты по-другому.
86. Игра в «32»
В эту игру играют вдвоем. Положите на стол 32 спички. Тот, кто начинает играть, берет себе одну, две, три или четыре спички. Затем и другой берет себе сколько хочет спичек, но тоже не более четырех. Потом опять первый берет не свыше четырех спичек. И так далее. Кто возьмет последнюю спичку, тот и выиграет.
Игра очень простая, как видите. Но она любопытна тем, что тот, кто начинает игру, всегда может выиграть, если только правильно рассчитает, сколько ему нужно брать.
Можете ли вы указать, как он должен играть, чтобы выиграть?
87. То же, но наоборот
Игру в «32» можно видоизменить: тот, кто берет последнюю спичку, не выигрывает, а, наоборот, проигрывает.
Как следует здесь и ать, чтобы наверняка выиграть?
88. Игра в «27»
Эта игра похожа на предыдущие. Она также ведется между двумя игроками и тоже состоит в том, что играющие поочередно берут не более 4 спичек. Но конец игры иной: выигравшим считается тот, у кого по окончании игры окажется четное число спичек. В этой игре начинающий ее имеет преимущество. Он может так рассчитать свои ходы, что наверняка выиграет.
В чем состоит секрет беспроигрышной игры?
89. На иной лад
При игре в «27» можно поставить и обратное условие: считается выигравшим тот, у кого после игры окажется нечетное число спичек.
Каков здесь способ беспроигрышной игры?
90. Из шести спичек
Можете ли вы из шести спичек составить четыре равносторонних треугольника, притом так, чтобы ни одна сторона ни одного треугольника не была короче спички?
Попытайтесь. И не отчаивайтесь в успехе, если вам сразу не удастся решить задачу, она все-таки разрешима и даже без особых хитростей.
Не бойтесь также и подвоха в условии задачи; ее надо понимать именно так, как сказано: составить из 6 спичек 4 равносторонних треугольника.
Решения задач 81-90
81. Удваивая или утраивая четное число, вы всегда получаете в результате четное число. Другое дело с числом нечетным: при удвоении оно становится четным, но при утроении остается нечетным. Гривенник, следовательно, дает четное число и при удвоении, и при утроении; напротив, 3 копейки дают четное только при удвоении; утроенные они дают число нечетное. Мы знаем также, что, складывая четное число с четным, получим четное , а складывая четное и нечетное, получим нечетное число.
Отсюда прямо вытекает, что если в нашем фокусе сумма оказалась четной, значит, три копейки были удвоены, а не утроены, т. е. находились в правой руке.
Если бы сумма была нечетной, это означало бы, что три копейки подверглись утроению и, следовательно, находились в
Аевой руке.82. Секрет фокуса кроется в том, что второй гость, приписывая к задуманному трехзначному числу то же число, умножил его, сам того не подозревая, на 1001. Действительно, если, например, первый гость задумал число
873,
то у второго гостя получилось число
873873.
Но ведь это не что иное, как
873000 + 873, т. е. 873 × 1001.
А число 1001 – замечательное число: оно получается от умножения 7,11 и 13. Не удивительно поэтому, что хозяин уверенно предлагал делить такое шестизначное число сначала на 13, потом на 11 и на 7. Делить же последовательно на 13,11 и на 7 все равно, что делить на 13 × 11 × 7, т. е. на 1001. Итак, второй гость умножил задуманное число на 1001, а три следующих гостя совместно разделили полученное им число на 1001. Вот почему в результате снова получилось задуманное число.
83. Этот курьезный фокус, в сущности, прост до смешного. Его разгадка ясна, например, уже из того, что если на последний вопрос вам ответит не туз, а валет, успех отгадывания будет не менее блестящим. Вообще, весь секрет фокуса вот в чем: сообразно с тем, что вам нужно, вы сосредоточиваете внимание собеседника либо на тех картах, которые им названы, либо же на тех, которые не названы. А так как задуманная карта непременно должна оказаться либо среди названных, либо среди не названных, то нисколько не удивительно, что собеседник ваш всегда «отгадывает» безошибочно.
Рис. 83. Кольцо, разрезанное вдоль средней линии.
Разумеется, когда вы проделаете этот фокус несколько раз подряд, уловка будет раскрыта. Но если не злоупотреблять недогадливостью партнера, то можно поставить в тупик самого находчивого человека.
84. Получаются два кольца, но продетые одно в другое, как звенья цепи (рис. 83). Если каждое из этих колец вы снова разрежете вдоль, то опять получите два кольца, продетые одно в другое.
85. При разрезании этого кольца вдоль получится, вопреки всем ожиданиям, не два кольца, а… одно, вдвое большее (рис. 84).
Наша изогнутая лента, обладающая столь удивительным свойством не разъединяться при разрезании, называется в геометрии поверхностью Мебиуса, по имени знаменитого математика прошлого века.
Другая замечательная особенность нашего кольца состоит в том, что у него нет «лицевой стороны» и «изнанки»: «лицо» ленты постепенно переходит в «изнанку», так что невозможно указать, где кончается одна сторона и начинается другая. Если вы пожелали, например, покрасить одну сторону нашей бумажной ленты, скажем, в красный цвет, а другую оставить некрашенной, то не смогли бы выполнить этого: у нашей ленты нет двух сторон, она односторонняя [5] .
Рис. 84. Другое кольцо, разрезанное вдоль средней линии.
Рис. 85. Кольцо после двукратного разрезания.
Но вернемся к разрезанию нашей ленты. Если, разрезав ее вдоль и получив одно кольцо, вы разрежете новое кольцо, у вас получится на этот раз два кольца (рис. 85). Однако разнять их вы не сможете: они запутаны одно в другом сложным гордиевым узлом, который можно рассечь только ножницами.
86. Нехитрый секрет беспроигрышной игры найти довольно легко, если попробовать сыграть партию с конца. Нетрудно видеть, что если предпоследним вашим ходом вы оставите партнеру на столе 5 спичек, то выигрыш обеспечен: партнер не может взять больше 4 спичек, и, следовательно, вы возьмете после него все остальные. Но как устроить, чтобы вы наверняка могли в предыдущий ход оставить на столе 5 спичек? Для этого необходимо, делая этот ход, оставить противнику ровно 10 спичек: тогда, сколько бы он ни взял, он не оставит вам меньше
6 – и вы всегда сможете оставить ему 5. Далее, как сделать так, чтобы партнеру пришлось брать из 10 спичек? Для этого надо в предыдущий ход оставить на столе 15 спичек.
Так, последовательно вычитая по 5, мы узнаем, что на столе надо оставить 20 спичек, а еще ранее 25 спичек и, наконец, в первый раз 30 спичек, т. е., начиная игру, взять 2 спички.
Итак, вот секрет беспроигрышной игры: сначала берите 2 спички; затем, после того как партнер взял несколько спичек, берите столько, чтобы на столе осталось 25; в следующий раз оставьте на столе 20, потом 15, потом 10 и, наконец, 5. Последняя спичка всегда будет вашей.
87. Если условие игры обратное, т. е. взявший последнюю спичку считается проигравшим , то вам надо в предпоследний ваш ход оставить на столе 6 спичек: тогда, сколько бы ни взял ваш партнер, он не оставит вам меньше 2 и больше 5, т. е. вы в любом случае сможете последующим ходом последнюю спичку оставить ему. Но как сделать так, чтобы оставить на столе 6 спичек? Для этого нужно в предыдущий ход оставить на столе 11 спичек, а еще в более ранние ходы 16, 21, 26 и 31 спичку. Итак, вы начинаете с того, что берете всего 1 спичку, а дальнейшими ходами оставляете нашему партнеру 26, 21, 16, 11 и 6 спичек; последняя спичка неизбежно достанется противнику.
88. Здесь разыскать способ беспроигрышной игры несколько труднее, чем при игре в «32». Надо исходить из следующих соображений.
1. Если у вас перед концом партии нечетное число спичек, вы должны оставить противнику 5 спичек, и ваш выигрыш обеспечен. В самом деле: в следующий ход противник оставит вам 4, 3, 2 или 1 спичку. Если он оставит
4 – вы берете три спички и выигрываете, если 3 – берете все три и выигрываете; если 2 – берете одну и также выигрываете.
2. Если же перед концом игры у вас оказывается четное число спичек, то вы должны оставить противнику 6 или