My-library.info
Все категории

Яков Перельман - Головоломки. Выпуск 2

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Яков Перельман - Головоломки. Выпуск 2. Жанр: Прочая детская литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Головоломки. Выпуск 2
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
19 февраль 2019
Количество просмотров:
236
Читать онлайн
Яков Перельман - Головоломки. Выпуск 2

Яков Перельман - Головоломки. Выпуск 2 краткое содержание

Яков Перельман - Головоломки. Выпуск 2 - описание и краткое содержание, автор Яков Перельман, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Увлекательные и каверзные головоломки для юных математиков.Непростые, но интересные задачи научат логически рассуждать и нестандартно мыслить.

Головоломки. Выпуск 2 читать онлайн бесплатно

Головоломки. Выпуск 2 - читать книгу онлайн бесплатно, автор Яков Перельман

3. Если начать наблюдение за стрелками ровно в 12 часов, то в течение первого часа мы искомого расположения не заметим. Почему? Потому что часовая стрелка проходит 1/12 того, что проходит минутная, и, следовательно, отстает от нее гораздо больше, чем требуется. На какой бы угол ни отошла от 12 минутная стрелка, часовая повернется на 1/12 этого угла, а не на 1/2, как нам требуется. Но вот прошел час; теперь минутная стрелка стоит у 12, часовая – у 1, на 1/12 полного оборота впереди минутной. Посмотрим, не может ли такое расположение стрелок наступить в течение второго часа. Допустим, что момент этот наступил тогда, когда часовая стрелка отошла от цифры 12 на долю полного оборота, которую мы обозначим через х. Минутная стрелка успела к этому времени пройти в 12 раз больше, т. е. 12 × х. Если вычесть отсюда один полный оборот, то остаток 12 × х – 1 должен быть вдвое больше, чем х, т. е. равняться 2 × х.

Итак, 12 × х – 1 = 2 × х, откуда следует, что 1 целый оборот равен 10 × х (действительно, 12 × х-10 × х = 2 × х). Но если 10 × х = = целому обороту, то х = 1/10 части оборота. Вот и решение задачи: часовая стрелка отошла от цифры 12 на 1/10 полного оборота, на что требуется 12/10 ч, или 1 ч 12 мин. Минутная стрелка при этом будет вдвое дальше от 12, т. е. на расстоянии 1/5 оборота; это соответствует 60/5 = 12 мин – как и должно быть.

Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.

Для этого дождемся двух часов; минутная стрелка стоит у 12, а часовая – у 2. Рассуждая, как прежде, получаем равенство


12 × х – 2 = 2 × х,


откуда 2 целых оборота равны 10 × х и, значит, х = 1/5 целого оборота. Часы будут показывать при этом 12/5 = 2 ч 24 мин.

Дальнейшие моменты читатель легко вычислит сам и найдет, что стрелки располагаются согласно требованию задачи в следующие 10 моментов:

в 1 ч 12 мин

в 2 ч 24 мин

в 3 ч 36 мин

в 4 ч 48 мин

в 6 ч

в 7 ч 12 мин

в 8 ч 24 мин

в 9 ч 36 мин

в 10 ч 48 мин

в 12 ч.

Ответы: «в 6 часов» и «в 12 часов» могут показаться неверными, – но только с первого взгляда. Действительно, в 6 часов часовая стрелка стоит у 6, минутная – у 12, т. е. ровно вдвое дальше от начальной отметки 12 (успев описать один оборот). В 12 же часов часовая стрелка удалена от 12 на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль – то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи.


4. После сделанных разъяснений решить эту задачу нетрудно. Рассуждая, как прежде, легко сообразить, что в первый раз требуемое расположение стрелок будет в тот момент, который определяется равенством


12 × х – 1 = х/2,


откуда 1 = 111/2 × х, или х = 2/23; целого оборота, т. е. стрелки будут расположены требуемым образом через 11/23 ч после 12, т. е. в 1 ч 214/23 мин минутная стрелка должна стоять посредине между 12 и 11 /23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка к этому моменту пройдет 2/23 полного оборота).

Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства


12 × х – 2 = х/2,


откуда 2 = 111/2 × х, или х = 4/23; искомый момент – 2 ч 5 5/23 мин.

Третий искомый момент – 3 ч 719/23 мин и т. д.


5. Эта задача решается так же, как и предыдущая. Вообразим, что обе стрелки стояли у 12, и затем часовая отошла от 12 на некоторую часть полного оборота, которую мы обозначим буквой х. Минутная стрелка за это время успела повернуться на 12 х х. Если времени прошло не больше одного часа, то для удовлетворения требованию нашей задачи необходимо, чтобы минутная стрелка не дошла до конца полного оборота столько же, сколько часовая стрелка успела пройти от начала; другими словами


1 – 12 × х = х.


Отсюда 1 = 13 × х (потому что 13 × х -12 × х = х). Следовательно, х = 1/13 доле полного оборота. Такую долю оборота часовая стрелка проходит за 12/13 ч и показывает 555/13 мин первого. Минутная же стрелка за это время прошла в 12 раз больше, т. е. 12/13 полного оборота. А значит, обе стрелки отстоят от отметки 12 одинаково и, следовательно, одинаково отодвинуты и от отметки 6, находясь от нее по разные стороны.

Мы нашли одно положение стрелок – именно то, в котором они оказываются в течение первого часа. В течение второго часа подобное расположение стрелок возникает еще раз; мы найдем его, рассуждая прежним образом, из равенства


1 – (12 × х – 1) = х, или 2 – 12 × х = х,


откуда 2 = 13 × х (поскольку 13 × х – 12 × х = х), следовательно, х = 2/13 полного оборота. В таком положении стрелки будут в 111/13 3 ч, т. е. в 5010/13 мин второго.

В третий раз стрелки займут требуемое положение, когда часовая стрелка отойдет от 12 на 3/13 полного круга, т. е. в 210/13 часа, и т. д. Всех положений 11, причем после 6 часов стрелки меняются местами: часовая стрелка занимает те положения, в которых раньше была минутная, а минутная – те положения, которые раньше занимала часовая.


6. Обычно отвечают: «7 секунд». Но такой ответ, как сейчас увидим, неверен.

Когда часы бьют три, мы слышим две паузы:

1) между первым и вторым ударом;

2) между вторым и третьим ударом. Обе паузы длятся 3 с, значит, каждая продолжается вдвое меньше – 11/2 с.

Когда же часы бьют семь, то таких пауз бывает 6. Шесть раз по полторы секунды составляют 9 с. Следовательно, часы бьют семь, т. е. делают 7 ударов за 9 с.


7. Солнце при своем кажущемся суточном движении описывает полный круг за 24 часа, т. е. за столько же времени, что и часовая стрелка упомянутых заграничных часов. Поэтому, если в полдень, т. е. в 12 часов дня, расположить циферблат карманных часов так, чтобы часовая стрелка была направлена на Солнце, то эта стрелка, двигаясь вместе с Солнцем, будет все время указывать на дневное светило.


Рис. 6. Часы в роли компаса


Отсюда вытекает простой способ отыскивать с помощью часов (конечно, только днем, в безоблачную погоду) то место, где Солнце бывает в полдень, т. е. находить направление на юг. Для этого нужно расположить циферблат так, чтобы часовая стрелка «смотрела» на Солнце; тогда направление на цифры 12 укажет, где было солнце в 12 часов, т. е. направление на юг.


8. Часовая стрелка обыкновенных часов описывает полный круг не за 24, а за 12 часов, т. е. движется вдвое медленнее, чем Солнце по небу. Отсюда легко сообразить (см. предыдущую задачу), как найти направление на юг с помощью обыкновенных карманных часов.

Нужно расположить их так, чтобы часовая стрелка была направлена на Солнце, и разделить пополам (на глаз) угол между часовой стрелкой и направлением на цифру 12. Линия, делящая этот угол пополам, покажет, где солнце было в полдень, т. е. точку юга.


9. Большинство людей в ответ на вопрос нашей задачи рисуют 6 или 9, либо VI или IX.

Это говорит о том, что можно видеть вещь сто тысяч раз и все-таки не знать ее. Дело в том, что обычно на циферблате (мужских часов) цифры шесть вовсе нет – на ее месте помещается секундник (рис. 7).


10. Загадочные перерывы в тиканьи часов объясняются утомлением слуха. Наш слух притупляется на несколько секунд, и в эти промежутки мы не слышим тиканья.


Рис. 7

Спустя короткое время утомление проходит и прежняя чуткость восстанавливается, тогда мы снова слышим ход часов. Затем наступает опять утомление, и т. д.

Десять разных задач

1. Горизонт

Часто приходится читать и слышать, будто одно из убедительных доказательств шарообразности Земли заключается в том, что линия горизонта повсюду имеет форму окружности, а коль скоро это так, отсюда делается вывод, что Земля наша должна быть шаром.

Подумайте, однако, какую форму имела бы линия горизонта, если бы Земля была не шарообразной, а плоской и бесконечно простиралась бы во все стороны?

2. Где и когда?

Вам, вероятно, знаком бессмысленный стишок:

Рано утром, вечерком,
В полдень, на рассвете…

Неведомый слагатель этих стихов стремился выразить ими заведомую нелепость и подбирал слова, которые противоречили бы одно другому.


Яков Перельман читать все книги автора по порядку

Яков Перельман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Головоломки. Выпуск 2 отзывы

Отзывы читателей о книге Головоломки. Выпуск 2, автор: Яков Перельман. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.