- Пять тысяч киловатт… Это символично, не так ли?
- Первый реактор ИТЭР должен сыграть такую же роль. Надо показать, что физики не ошиблись! На "Токамаках" в Европе, Японии, в США были получены весьма обнадеживающие результаты, причем по тепловой мощности на этих установках мы приблизились к первой атомной… Так что символов вполне достаточно. Если работы не будут остановлены по разным причинам, и прежде всего - финансовым трудностям, то мощность можно повысить в два-три раза, а это уже вполне ощутимые результаты, которые позволяют говорит, что стадия фундаментальных исследований успешно преодолена.
-А затем?
- Можно будет приступать к созданию ДЕМО - Демонстрационной термоядерной электростанции. Она уже должна производить "коммерческую" электроэнергию.
- А на сегодняшний день главное достижение?
- Как и предусмотрено планами, создан инженерный проект экспериментального термоядерного реактора. Он прошел все стадии обсуждения и рецензирования. Документация подготовлена для того, чтобы передать ее в промышленность для изготовления агрегатов и систем реактора. Мы убеждены, что если по этому проекту установка будет построена, то на ней будет осуществлено зажигание термоядерной плазмы. Таким образом, завершится принципиальный этап в становлении и развитии этой проблемы.
ТОЛЬКО ФАКТЫ: "Параметры ИТЭР в стадии зажигания: большой радиус - 8,06 м, малый радиус -3,01 м, тороидальное магнитное поле - 5,7 Тл, ток в плазме - 24 МА, температура электронов - 22 кэВ, ионов - 20 кэВ, термоядерная мощность -1500 МВт. ИТЭР - поистине грандиозное сооружение диаметром с десяти - и высотой с восьмиэтажный дом".
- Разработка реактора осуществлялась в несколько этапов. Сначала - определение основных параметров проекта. Эта работа была закончена к 1990 году. Однако уже в то время начались чисто инженерные исследования, поиски оптимальных конструкций. А с 1992 года четыре группы начали детально прорабатывать инженерный проект ИТЭР. Они находились у себя в стране, "дома", но, тем не менее, координация осуществлялась весьма жестко: для этого было создано три проектных центра - в США, Германии и Японии. Высший руководящий орган проекта - Совет ИТЭР - находится в Москве. Полная стоимость этапа инженерного проекта ИТЭР оценивается в 1,2 миллиарда долларов США.
- Но нем дальше, тем больше требуется денег?
- На сооружение реактора требуется около семи лет, а его стоимость составит 6,9 миллиарда долларов.
- Не очень дорого?!
- Любые научные достижения очень трудно оценивать в рублях или долларах, так как они подчас способны в корне менять жизнь человечества. И таких примеров множество - они банальны, и я не стану их приводить… Мне кажется, что на каком-то таком рубеже мы находимся сегодня, так как работы по ИТЭР дали возможность глубоко понять физику явления, преодолеть огромное количество "неустойчивостей", которые так мучили физиков. А знания, как известно, стоят дороже любых денег! Кстати, путь к ИТЭРу был сложен и дорог, пришлось провести множество экспериментов, а они, как известно, дорогие - так что страны - участницы этого международного проекта выполнили весьма значительный объем работ.
- Физика явления, безусловно, сложна… Но как представить то, что происходит внутри реактора?
- Необходимо, чтобы частица не вырвалась из камеры! Она должна быть внутри тора и не касаться стенок - магнитное поле обязано удерживать ее внутри. Траектория движения частицы сложна… В общем, можно представить, будто мы имеем дело с гигантским волчком, который создает термоядерная плазма. Температура ее достигает 450 миллионов градусов.
- Страшновато, но красиво и необычно!
- Так и есть, ведь ИТЭР - оригинальное, фантастическое сооружение.
- Если можно, несколько цифр, по которым можно судить об этом?
- Итак, идет зажигание… Газ воспламеняется, плазма работает минимально 150 секунд, но мы надеемся, что доведем время горения до тысячи… Часть энергии - 300 мегаватт мы теряем на излучении, 100 - на тепло, 50 - "выплескивается" на стенки. Это все непроизводительные потери, и они составляют по подсчетам треть всей получаемой энергии… Нейтроны вылетают в "коридор" из модулей. Их тысяча, размеры - два на два метра. Модули охлаждаются, то есть тепло отводится от них. Нейтронные потоки по сути дела и являются той "турбиной", что крутит нашу электростанцию. В отличие от атомного реактора эти потоки "чистые", так как в них нет осколков деления.
- Это реальные расчеты?
- По сути дела термоядерный реактор уже действовал, и мы наблюдали за его работой…
- Почему же мы об этом не знали?
- Мы наблюдали за ним в виртуальном пространстве, то есть на суперкомпьютере в Ливерморе.
- Там, где рассчитываются и моделируются термоядерные заряды?
- Это одна и та же область физики. Однако проект ИТЭР требует разработки и внедрения большого количества новых технологий. Это и технология термоядерной плазмы, и сверхвысокий вакуум, и сверхпроводники. Ключевая проблема - выбор и испытания материалов для термоядерного реактора. А следовательно, развитие новых металлургических технологий. Сколько времени потребуется для этого, сказать трудно, но сейчас поиск новый материалов для ИТЭР вышел на первый план. От успеха этой работы зависит и срок сооружения ИТЭР. Ясно, что это уже возможно в первой половине XXI века.
- Но первые элементы ИТЭР уже делаются?
- Конечно, ведь идут их испытания. Вот здесь-то в полной мере и проявляется международная кооперация. К примеру, есть уже "сверхпроводящие сегменты". Сначала они делаются в Италии, после этого переправляются на завод в Сан-Диего -там идет сборка. Следующий этап: обжиг в специальных печах. Затем новая проверка и отправка на испытания. Ведь процесс идет не в одной стране, а в нескольких, там, где есть соответствующие производства и испытательные стенды. Так что создание ИТЭР, на мой взгляд, это пример настоящей международной кооперации.
-А что вас больше всего поражает в проекте?
- Пришлось бы перечислять слишком многое… Думаю, для широкой публики необычным покажется проект "Робот". Понятно, что внутри реактора человеку находиться нельзя, но работы там проводить нужно. Для этого и создан специальный робот, который способен пройти в любую точку реактора, заменить трубки, если это нужно, провести любой, даже самый сложный ремонт. К примеру, он вырезает поврежденную трубку, прячет ее в своем корпусе, достает оттуда резервную и приваривает ее в нужное место… Кстати, в реакторе находится огромное количество трубок, столько же, сколько в человеческом организме сосудов. За всеми ими нужно следить. И как хирург проводит операцию на сосудах у человека, точно так же робот действует внутри реактора.