Решено было прежде всего по примеру того, как поступали с облученным алюминием, выделить неизвестный элемент при помощи химического анализа.
Однако никакими ухищрениями нового элемента обнаружить не удавалось. Но отрицательный результат в науке тоже зультат. В данном случае он говорил о том, что под действием нейтронов образовался не новый элемент, а третий радио активный изотоп брома.
...О странном, возбуждающем интерес эксперименте узнал весь институт. Заинтересовался им и Абрам Федорович Иоффе, хотя мысль его была занята проблемами полупроводников. Откуда появился у брома третий «незаконный» близнец?
Поначалу решили, что он возникает в результате реакции нового типа, которая проходит без захвата нейтрона а сопровождается выбрасыванием еще одного ядерного нейтрона.
Но экспериментаторы опровергли такое предположение. По расчетам теоретиков, реакция, сопровождающаяся испусканием нейтрона, должна бы требовать затраты энергии, а это возможно только при бомбардировке ядер быстрыми нейтронами. Она же, как доказали Игорь Васильевич и Лев Ильич Русинов, шла не только на быстрых частицах, но и на медленных...
Получалось, что новый изотоп по своему массовому числу... не отличается от уже исследованного. В нем столько же протонов и нейтронов, но совершенно другие свойства.
Так был сделан новый, принципиальной важности шаг в глубины атомного ядра. Оказалось, что свойства ядра зависят не только от количества частиц, но и от структуры. Ядра с одинаковым числом протонов и нейтронов, но разной структурой Курчатов назвал изомерами, а явление — ядерной изомерией.
Но какой же из изотопов брома «рождает» изомеры? Позднее установили, что бром с массовым числом 80 дает при взаимодействии с нейтронами два изотопа с периодами полураспада 18 минут и 4,2 часа.
Сейчас явление ядерной изомерии стало хрестоматийным, вошло во все учебники по ядерной физике. Оно подробно изучено, в том числе и самим Игорем Васильевичем, до конца жизни интересовавшимся судьбой своего открытия. Уже известно около сотни ядер-изомеров.
В краткой энциклопедии «Атомная энергия» так оценена эта работа И. В. Курчатова и его товарищей: «Примером выдающихся новых результатов, непосредственно связанных с развернувшимся в мировом масштабе изучением искусственной радиоактивности, может служить открытие ядерной изомерии искусственно активизированных веществ. И. В. Курчатов, Б. В. Курчатов, Л. И. Русинов, Л. В. Мысовский впервые наблюдали это явление в 1935 году в случае радиоактивного брома (Br^80). Значение ядерной изомерии в связи с вопросами структуры ядер начинает выясняться в самое последнее время».
Показательно и то, что в этом случае экспериментаторы, работавшие под руководством Игоря Васильевича, сами искали теоретическое обоснование открытому явлению. В связи с этим на одном из семинаров, где И. В. Курчатов и Л. И. Русинов докладывали о своих взглядах на процессы в ядрах-изомерах, Иоффе горячо поздравил их с успехом и высказал упрек в адрес теоретиков ядра.
— Жаль, что наши теоретики, — отметил он, — ничем не помогали экспериментаторам и им пришлось трудиться на два фронта: и выполнять сложнейшие опыты и тут же истолковывать факты. Тем знаменательнее их успех!
1935 год — поистине феноменальный по плодовитости даже для такого необычайно трудолюбивого ученого, каким был Игорь Васильевич. В этом году было опубликовано 17 его оригинальных работ. В качестве участников исследований выступали Г. Д. Латышев, Л. М. Неменов, М. А. Еремеев, И. П. Селинов, Д. 3. Вудницкий, Л. В. Мысовский, Л. А. Арцимович и другие.
О некоторых из этих ученых мы уже говорили и расскажем впоследствии, о двух же из них есть смысл рассказать здесь.
Л. М. Неменов, сын известного рентгенолога, основателя рентгеновского института, еще студентом по настоянию отца пришел в физтех. Иоффе определил юношу в лабораторию Курчатова:
— Вот, Игорь Васильевич, знакомьтесь — Буба Неменов. Будет вам помогать.
Давая поручения, Курчатов скоро заметил, с какой добросовестностью Буба берется за любое дело: красит детали, прокладывает трубы. Лаборатория пришлась Бубе по душе. Он окончил институт, был переведен в другой отдел на самостоятельную работу. Но в дни «радиоактивной лихорадки» Неменов пришел к Курчатову, принял участие в нескольких работах и «заболел» ядерной физикой окончательно. Л. М. Неменов так и остался работать с Игорем Васильевичем.
Владимир Иосифович Бернашевский работал механиком на одном из заводов. Проходя после смены мимо здания физтеха, где сверкали молнии, раздавался зловещий треск, он останавливался как зачарованный. Однажды он зашел туда попроситься на работу. Его взяли. В первые же. дни на него обратил внимание Игорь Васильевич. Уж очень увлекался опытами парень! И вот уже он не механик Володька, а уважаемый соавтор уважаемого ученого.
Знакомясь с именами тех, кто работал с Игорем Васильевичем, мы не можем не заметить, что число их год от году росло. Академик А. П. Александров справедливо писал по этому поводу: «Создание „задела“ на будущее, расширение фронта работ, привлечение новых сил — вот стиль Игоря Васильевича. В новую область физики И. В. Курчатов входил, как в битву, собирая силы на главном направлении, создавая резервы для будущего».
Если «затормозить» нейтроны...
Вскоре после открытия наведенной радиоактивности Энрико Ферми начал исследования взаимодействий нейтронов с веществом не только на той большой скорости, с которой вылетали нейтроны из радон-бериллиевого источника, а и на других, меньших скоростях. Было известно, что нейтроны вылетают из бериллия со скоростью 30 тысяч километров в секунду. Если их «затормозить», то как они будут взаимодействовать с ядрами?
В 1934 году к подобным же исследованиям приступил и Курчатов. Он писал:
«Согласно нашим представлениям большие скорости вовсе не обязательны для того, чтобы нейтрон мог проникнуть в ядра элементов, расщеплять должны были и более медленные нейтроны».
Чтобы проверить это утверждение практически, следовало найти замедлители нейтронов.
И первое, что пришло в голову исследователям, применить воду.
Игорь Васильевич так рисовал механизм замедления нейтронов в воде: «Нейтроны, проходя через воду, испытывают время от времени столкновения с протонами, и ввиду того что масса обеих частиц примерно одинакова, при каждом столкновении энергия нейтрона... уменьшается. Вместо быстрых нейтронов мы получим, таким образом, медленные, со скоростью в 1000 километров в секунду».
Опыты подтвердили предположения, но кое-что и уточнили:
«Детальное исследование свойств замедленных (водой или парафином) нейтронов показало, что их скорости еще меньше, чем мы... рассчитывали... Нейтроны, проходя через воду или парафин, испытывают большее число столкновений, чем это было указано выше, и должны достигать по расчету в конце концов (в толщинах парафина всего лишь в 10 см) тепловых скоростей... порядка двух километров в секунду».