Для каждого более или менее сложного объекта можно создать много обобщенных моделей - все зависит от "вкуса и умения" их создателя. Это касается не только описательных моделей, но даже действующих. Представьте, сколько моделей можно сделать на один автомобиль.
Не случайно я пользуюсь примерами из техники: ее объекты достаточно сложны и в то же время неизмеримо проще систем "типа живых" - от вируса до общества и биосферы. Для любой технической системы существуют "полные" модели - чертежи, схемы и описания, по которым их можно строить. Для биологических систем сделать это пока нельзя. Мы еще не знаем биологию так подробно, чтобы уметь смоделировать природу.
Означает ли это, что для таких объектов нужно ограничиваться описаниями, словесными моделями, что для них принципиально непригодны количественные, тем более действующие модели? Ни в коем случае! Полных моделей не создать, но обобщенные возможны и необходимы. Без них неполноценно познание и ограничено управление.
Даже в технике, чтобы инженер мог разобраться в незнакомой машине, ему недостаточно посмотреть на нее или получить подробнейшую монтажную схему. Ему необходимы обобщенные модели: блок-схемы, принципиальная схема, характеристики и кривые. То же касается и живых систем.
Нельзя познать организм, если смотреть на него даже через микроскоп. Нужны описания его крупных частей, обобщенные модели. Это касается не только структуры, но и функций. Например, для понимания физиологии организма нужна модель взаимодействия - сердца, сосудов, легких, почек и пр. Ее можно создать и не имея модели клеток, составляющих эти органы. Она поможет понять, как нарушаются функции при некоторых болезнях, например, при пороках сердца, и даже автоматически управлять ими после операции. Но такая обобщенная модель не может разъяснить нам, как возникает рак, потому что это происходит на уровне молекул в клетке. Для этой цели нужна не обобщенная, а полная ее модель, что пока недоступно.
Итак, мы познаем истину через моделирование, создание моделей. При этом для сложных объектов обязателен набор моделей разной обобщенности - детальности.
Важнейший вопрос - соотношение сложности модели и объекта. Невозможно сложность выразить просто, если претендовать на полноту. Не можем же мы нарисовать клетку, чтобы обозначить все молекулы! Для сложных объектов пока существуют только обобщенные модели с разной степенью подробности. Часто однобокие, неравномерные. Впрочем, этот вопрос - об отображении сложности в модели - не так прост. Нельзя говорить категорично. Возьмем природу. В генах, в ДНК зародышевой клетки заложена модель будущего организма. Конечно, генов до ста тысяч, и каждый состоит из тысячи нуклеотидов - букв. Это много. Но все равно живая модель из генов неизмеримо проще всего организма.
Как это можно себе представить? В генах заложена компактная модель, в которой отражена структура и технология. Поэтому в принципе можно предполагать создание искусственных моделей, точно описывающих сборку во много раз более сложных объектов. Однако нам еще далеко до природы.
Перейдем теперь к "технологии" - как создавать модель.
Получение моделей как будто представляет собой отражение объекта, если его рассматривать или слушать. Так же, как объектив фотоаппарата рисует на пластинке негатив, так глаз "рисует" узоры из нейронов в коре мозга. Но... не совсем так. Во-первых, существует настройка рецептора - избирательное тонкое восприятие деталей. Получаются неравномерные модели. Во-вторых, выбор объектов. Разум присутствует уже при восприятии, отбирает информацию. По каким признакам? Под влиянием чего? Скажем пока коротко (до рассмотрения человеческого разума). Первичный отбор информации или объектов для моделирования диктуют чувства ("Что интересно") и убеждения ("Что считаем важным"). Таким образом, субъективное начало присутствует с момента восприятия. Именно поэтому одни и те же сложные объекты каждый воспринимает несколько иными и по-разному изображает их.
Понимание истин... Что это такое? Может быть, просто распознавание фигур? Примерно так и есть. Мы распознаем неизвестное путем сравнения с известным - целиком или по частям. Эти известные фигуры-эталоны, взятые для сравнения, заложены в память разума через обучение. Они привязаны к другим, уже имеющим назначение, обозначение, оцененным чувствами. Мы их "знаем". Наоборот, неизвестные фигуры не имеют названия, применения, их некуда "привязать".
Каждый разум старается узнать в незнакомом знакомое. У каждого в памяти свой набор обобщенных и частных моделей (фигур). Их он и накладывает на новую. При этом неважно, что полного совпадения не получается. Если есть уверенность, то неполное совпадение сходит за полное. В этом - субъективность распознавания или понимания истины.
Познание (моделирование) простых систем относительно несложно. Проблемы возникают в познании "живых" систем. Их описательные модели находятся на уровне детских рисунков и игрушек. Масса деталей и ненадежных обобщений. Степень обобщения и крен в ту или иную сторону определяются квалификацией и убежденностью автора, то есть набором моделей-эталонов, которые у него в памяти и которые он "любит". Психологи называют это "установка". Если грубее: "предвзятые идеи". Та или иная степень предвзятости существует у каждого, поскольку у каждого разума есть чувства и память. Нет абсолютно объективных исследователей, когда дело касается сложных систем, где приходится пользоваться обобщенными моделями.
Аппарат человеческого разума для познания сложных систем ограничен. Книжные словесные модели - неподходящий код для количественного моделирования. Подобные модели более простых объектов - в физике и технике - построены с использованием математики и представлены системами уравнений.
Другое дело, например, клетка или общество. Структурных единиц очень много, они скомпонованы в многоэтажную иерархию. Количественно определить зависимости между элементами очень трудно. Цифровые данные недостаточны и противоречивы. Поэтому количественные модели ограничиваются частными задачами.
В то же время без полных или хотя бы обобщенных моделей не всегда понятен даже принцип действия системы. Именно поэтому они необходимы.
Здесь показана простенькая схема, чтобы представить, как примерно выглядит эта самая "действующая" модель некой системы.
Каждый квадратик (А - Е) - это структурная часть, например орган. Каждая стрелка (1-6) - функция. "Выход" одной части является "входом" для другой. Некоторые стрелки замыкают "обратные связи", Теперь к этому термину привыкли, хотя и не все понимают, что говорят. В принципе, это когда часть "выхода" снова замыкается на "вход" и суммируется с ним. Положительная обратная связь (а +) усиливает "вход" и быстро доводит функцию до максимума, отрицательная (в -) уменьшает и способствует плавности перехода с одного режима на другой...