Ознакомительная версия.
Во второй месяц 1892 года Тесла обнародовал свое изобретение – первую настоящую электронную лампу – в присутствии крупнейших представителей этой области исследования. Чтобы добиться создания наиболее совершенного вакуума, начинающий ученый удалил воздух из лампы, находящейся внутри другой вакуумной трубки. Через этот внутренний резервуар Тесла пропускал луч света, «лишенный всякой инерции». Создавая необычайно высокие частоты, он добивался появления электрической «щетки», которая была настолько чувствительной, что реагировала даже на «напряжение мускулов в руке человека»! Эта щетка двигалась по кругу в противоположную сторону от приближающегося человека, но всегда по часовой стрелке. Заметив, что луч чрезвычайно «чувствителен к магнитным влияниям», Тесла предположил, что его направление вращения, вероятно, вызывается геомагнитными кручениями Земли. Далее он высказал гипотезу о том, что эта щетка будет двигаться против часовой стрелки в Южном полушарии. Только магнит может уловить поток света, чтобы изменить направление вращения. «Я твердо убежден, – говорил Тесла, – что такая щетка, когда мы научимся ее правильно делать, сможет стать средством передачи информации на большое расстояние без проводов».
«Из всех этих феноменов, – начал Тесла свою следующую часть, – самыми привлекательными для слушателей, несомненно, являются те, которые отмечаются в электростатическом поле при передаче на значительное расстояние. При помощи правильно созданной катушки мне удалось воздействовать на вакуумные лампы независимо от их местонахождения в комнате».
Ссылаясь на работу Дж. Дж. Томсона и Дж. А. Флеминга в области создания светящейся нити с помощью вакуумной лампы, Тесла продолжал обсуждать различные методы воздействия на вакуумные лампы посредством изменения длины волны или длины лампы.
Назвав в качестве примера веер и обсуждая исследования Приса, Герца и Лоджа о электромагнитных излучениях в земле и космосе, Тесла продемонстрировал «беспроводные» моторы: «Нет необходимости создавать даже малейшую связь между таким мотором и генератором, кроме, возможно, земли или разреженного воздуха. Вне всякого сомнения, что огромный потенциал светящихся разрядов может передаваться на много миль в разреженном воздухе, а направляя энергию в сотни лошадиных сил, можно оперировать моторами и лампами на значительных расстояниях из стационарных источников».
Основываясь на исследованиях, проведенных год назад, которые были подсказаны работой Дж. Дж. Томсона в области распространения электрической энергии, Тесла перешел к своей высокочастотной кнопочной лампе, которая могла дематериализовывать или «испарять» вещество. Мы видим, что это изобретение почти в точности является предшественником лазерных лучей. Скорее всего, в то время Тесла уже демонстрировал лазерные лучи. Однако ни он, ни другие ученые, присутствующие на лекции, не осознавали всей важности направленных лучей, поскольку это было сочетание свойств других световых эффектов в результате расщепления материи, на которую было направлено их действие.
Существуют два типа стандартных лазеров, соответствующих изобретениям Тесла: 1) рубиновый лазер, отражающий энергию к ее источнику, который, в свою очередь, стимулирует начало особого излучения атомов; и 2) газовый лазер, состоящий из трубки, наполненной гелием и неоном. Через два электрода у оснований трубки пропускается высокое напряжение, и происходит разряд. В обоих случаях возбужденные атомы собираются в свободном пространстве, а затем отражаются в одном направлении. Они отличаются от обычных вспышек не только тем, что испускают свет с одинаковой длиной волны, но и тем, что перед появлением света наступает пауза (метастабильное состояние).
Тесла работал с лампами, созданными этими двумя способами. Первую он называл кнопочной лампой, а вторую – фосфоресцирующей. Их основным назначением было эффективное освещение, а второстепенные функции заключались в том, что они служили лабораторными аппаратами для различных экспериментов. В одной лампе, наполненной «разреженным газом, при нагревании стекла по всей ее длине проходил постоянный разряд». Другая лампа «была покрыта с одной стороны фосфоресцирующей пудрой или смесью и давала ослепительный свет, намного превосходящий свет обычной лампы».
«Простой эксперимент заключался в прохождении энергии катушки, равной нескольким тысячам лошадиных сил. После этого я прикреплял к палке кусок фольги и приближался к катушке. Фольга не просто таяла, а испарялась, и весь процесс занимал не больше времени, чем пушечный выстрел. Это был удивительный опыт».
Тесла также придумал разновидность кнопочной лампы, которая могла расщеплять любой материал, включая цирконий и алмазы – самые твердые вещества в мире. Лампа представляла собой шар, покрытый внутри отражающим материалом, как лейденская банка, и с «кнопкой» из любого материала, чаще всего из углерода, которая была до блеска отполирована и прикреплена к источнику энергии. При прохождении электричества кнопка начинала излучать энергию, которая была направлена на внутреннюю поверхность лампы и на саму кнопку, что приводило к усилению эффекта «бомбардировки». Таким образом кнопка «испарялась».
Затем Тесла подробно описал работу рубинового лазера за пятьдесят лет до его изобретения в середине двадцатого столетия. Это описание вполне исчерпывающе:
«В фосфоресцирующей лампочке можно сконцентрировать любое количество энергии на поверхности крошечной кнопки из циркония, которая испускает интенсивное свечение, а поток вылетающих из нее частиц окрашен в ярко-белый цвет. Отмечаются великолепные световые эффекты, о природе которых трудно дать адекватное представление. Для иллюстрации эффекта с рубиновой каплей представим, что сначала появляется узкий коридор белого света, выступающий в верхнюю часть шара, где создается неровный участок фосфоресцирующего света. Таким способом образуется светящаяся четко очерченная линия (выделено курсивом. – Прим. авт. ), окаймляющая контуры капли, которая медленно распространяется по всему шару по мере увеличения размеров капли. Еще более захватывающее зрелище можно наблюдать при создании цинковой завесы, выполняющей двойное действие усилителя и отражателя».
Свою речь ученый закончил размышлениями о том, что усовершенствование конструкции рассчитанных на большие расстояния кабелей, по его предположениям, сделает возможной телефонную связь на другом берегу Атлантики. Важно упомянуть, что тогда он еще не мог предвидеть беспроводную передачу голоса, речь шла скорее о передаче информации (код Морзе), света и энергии. Однако беседы Тесла с Присом о существовании земных течений становились все чаще, и вскоре после этого Тесла начал размышлять над идеей передачи голоса и даже изображений посредством беспроводных конструкций.
Ознакомительная версия.