My-library.info
Все категории

Анатолий Анисимов - Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Анатолий Анисимов - Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык. Жанр: Искусство и Дизайн издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
23 февраль 2019
Количество просмотров:
116
Читать онлайн
Анатолий Анисимов - Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык

Анатолий Анисимов - Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык краткое содержание

Анатолий Анисимов - Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык - описание и краткое содержание, автор Анатолий Анисимов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
На основе алгоритмического анализа исследуются литературное творчество, структуры естественного языка и мышление человека. Системный подход применяется для анализа мифов, лингвистических схем, снов, предложений и Систем искусственного интеллекта. Особое внимание уделяется рекурсии как специальному алгоритмическому способу организации сложных систем. Рассматриваются примеры рекурсии в литературе, языке, в формировании психической деятельности человека. Для широкого круга читателей, интересующихся современными достижениями информатики, лингвистики и искусственного интеллекта.

Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык читать онлайн бесплатно

Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык - читать книгу онлайн бесплатно, автор Анатолий Анисимов

[Image]

Рис. 6. Изменения атрибутов при наказании слепотой

Систему можно представить двоичным вектором, координаты которого состоят из 0 или 1. Наличие 1 в соответствующем поле означает наличие атрибута, 0 — его отсутствие. Если в системе несколько элементов, можно соединить их представляющие вектора в один большой вектор. Отрицание системы выражается в изменении определенных полей вектора системы на противоположные. Например, ослепление Эдипа или тех, кто подсмотрел жизнь богов, сопровождается изменением двух координат (рис. 6). Отрицание может быть и положительным: не имел атрибута и получил его. Построение точных таблиц соответствия операторов отрицания в мифеме (связь полей в векторах взаимодействующих систем) — главная задача этнографа. Рассмотрим теперь, как построена волшебная сказка. Есть две системы с выделенными атрибутами: волшебная и обычная человеческая. Обычная система при помощи волшебной явно или не явно выводится из равновесия. Затем вступает в действие закон устойчивости целого. Система начинает действия по возвращению утраченного атрибута. Для победы над волшебной системой необходимы функции, отрицающие волшебные атрибуты. Появляются дарители и волшебные помощники или средства. Но они не возникают просто так, а включаются в обычную систему по закону отрицания отрицания. Герой либо освобождает своих помощников, либо захватывает их. Так как каждое вспомогательное средство обладает одним волшебным атрибутом и в этом только состоит его смысл, отрицание обычной системы со стороны этого средства состоит в отрицании свойства невозможности его использования. Тем самым средство включается в обычную систему. После этого возможно взаимодействие с волшебной системой, заключающейся в использовании волшебной силой всех своих атрибутов — попыток отрицания обычной системы и нейтрализации этих попыток уже имеющимися возможностями. Таким образом, в сказке, как и в мифе, элементарной неделимой единицей слелует рассматривать пару "действие и его отрицание"", т. е. пару вида (S> *Q); * (S> *Q). Раскрытие каждого такого отрицания действия по закону отрицания отрицания и составляет сюжетное построение сказочного повествования. Для взаимодействия с волшебной силой необходим простор. Сказка почти всегда начинается с отрицания отношения пространственного соседства. Люди, живущие под одной крышей, в одной пещере, просто рядом, образуют систему, связанную отношением пространственной близости. В силу закона устойчивости охотники возвращаются к родному очагу, путники стремятся в родные места, а перемена места жительства сопровождается ностальгией о прошлом месте обитания. В сказках стремление системы к сохранению пространственной близости выражается в виде запретов: не ходи в дальний лес, не заглядывай в эти комнаты, вернись к указанному сроку. Нарушение запрета приводит к отрицанию пространственной близости и жертва тут же переносится куда-нибудь за тридевять земель. Запрет эквивалентен отношению пространственной близости. Рассмотрим формальное применение закона отрицания отрицания в случае отношения пространственной близости. Пусть S1 — волшебная система, S2 — обычная человеческая. Запрет как-то связан с волшебной системой. Поэтому его нарушение направлено против волшебной системы. Возникает ответное действие, получаемое из раскрытия формулы * (S2> *S1). Возможны три варианта: S1> *S2 — волшебная сила похищает нарушителя; S1> **S1 — волшебная система ограничивается восстановлением запрета; S1> * S2 и S1> ** S1 — жертва похищается и запрет восстанавливается. Все три варианта могут быть выбраны, но второй встречается значительно реже. Хотя отдельным героям удается некоторое число раз испытывать терпение волшебной системы. В третьем случае, если запрет восстанавливается, кто-то его еще должен нарушить. Сказка экономна. В ней нет избыточных построений.

*[Image] Рис. 7. Волшебная система (начальное состояние).

Волшебное средство всегда прикрыто каким-нибудь атрибутом. Это может быть загадка или просьба дарителя, охрана средства, продажа и т. п. Отрицание атрибута приводит к высвобождению волшебного средства и включению его в систему героя. То есть обычно выбирается третий вариант раскрытия закона отрицания отрицания. Рассмотрим какой-нибудь вариант формального построения волшебной сказки. Пусть S1 — колдун, обладатель волшебного меча, запрет; S2 — красавица, муж; Н — старик-даритель. Выберем построение сказки по формулам

{S2>*S1; * (S2>*S1); {(S2>* Н);

*(S2> *H)}; {(S1> *S2);*(S1>*S2)}

Выбираем варианты отрицаний отрицаний. Получаем возможную последовательность действий:

S2>*S1; S1>*S2; S2>*H; H> **H и H>S2; S1>*S2; S2>*S1 и S2>**S2.

Как может звучать такая сказка? Надо только уточнить, какие атрибуты отрицаются. По этой информации однозначно восстанавливаются сами действия. Красавица нарушила запрет. Колдун унес ее за тридевять земель. Юноша встретил старика и помог ему. Старик дал юноше волшебный меч и указал дорогу к колдуну. Колдун пытается убить юношу волшебным мечом. Юноша сам своим волшебным мечом убивает колдуна и возвращается с красавицей-женой домой. В векторной форме волшебная система в этом сказочном варианте задается начальным вектором, изображенным на рис. 7. Изменения представляющего атрибутного вектора колдуна будут следующие: (0,1,1,1)>(1,0,1,1)> (1,0,1,0)> (0,0,0,0). Движение системы «колдун» выражается постепенным обнулением всех координат представляющего вектора, соответствующих потере атрибутов по ходу сюжета. В конце от колдуна остаются одни нули — все его функции исчерпаны. Часто волшебным средством можно воспользоваться некоторое число раз. В этом случае в представляющем векторе необходимо вводить дополнительные поля, выражающие количество попыток использования средства, каждая осуществленная попытка — замеена соответствующей еденицы на ноль. Таким образом, битву можно представить как постепенную потерю единиц, а существование сказочного объекта возможно, если он сохранил хотя бы одну единицу. Красавицы не умирают, а засыпают — та же смерть, но с сохранением атрибута красоты; мертвый защитник оживает, если он еще кому-то нужен. И только абсолютные нули исчезают из волшебного мира. В сказках и мифах возможна перестановка сюжетных конструкций, составляющих элементарные единицы. Например, юноша мог встретить старика и до похищения девушки. Но нельзя переставлять элементы внутри таких единиц — отрицание действия всегда идет после его применения. Каждое отрицание связано с некоторым функциональным атрибутом системы. Таких атрибутов не так уж и много. Они уже перечислялись: мертвый, живой, добрый, жадный, красивый, уродливый, сильный, слабый, родовая связь, соседство и т. п. Сказки могут начинаться с отрицания любого атрибута или нескольких. Например, часто они начинаются со смерти отца, у которого три сына, причем тот, кто будет героем, — самый младший, некрасивый и глупый. Смерть отца — это воздействие волшебной силы, отрицающей «живое». Отрицание этого действия приводит к столкновению с волшебным и получению новых положительных атрибутов. Некрасивый становится молодцем-красавцем, а Иванушка-дурачок оказывается вовсе и не таким уж дурачком. Так как атрибутов только конечное число, и у всех народов они одинаковы, выходит, что функционально все сказки устроены одинаково. Это не таинственный эмпирический факт, а следствие законов мышления и логики мира. Интересно, что формальная математическая логика вытекает из мифологического мышления. Если действие понимать как логическое следствие, должны быть тождественно истинными следующие формулы, выражающие закон отрицания отрицания;

ЕСЛИ А> *В ТО B> * A

ЕСЛИ А> *В ТО B> * * B

ЕСЛИ А> *В ТО B> * A B> ** B.

Для тех, кто знаком с формальным исчислением высказываний, не составляет труда проверить, что в самом деле эти формулы тождественно истинны, т. е. являются теоремами исчисления высказываний Более того, добавив правило логической транзитивности, можно легко превратить их в аксиомы исчисления высказываний. Так волшебная логика смыкается с формальной. Законы логики придумал не Аристотель — они всегда были в мифах и только ждали формальной системы обозначений. Как в физике, сказка предстает через динамическое столкновение двух систем, порождающее цепную реакцию с аннигиляцией элементарных частиц. А может, и наш мир — та же длинная-длинная сказка, а мы, ее персонажи, в ней для того, чтобы ее рассказать

4. ПАРАДОКСЫ ЯЗЫКА

"Я думаю, что все хорошо", — говорит Эдип, и эти слова священны. Они раздаются в суровой и конечной Вселенной человека. Они учат, что это не все, еще не все исчерпано.

А. Камю. Миф о Сизифе


ЛЖЕЦ

"Это все еще остается загадкой. Традиция приписывает ее Евбулиду Милетскому, который прославился тем, что сказал: «Psevdomai» "Я лгу", что означает, что, говоря это, он лгал. Цицерон излагает это так: "Если ты говоришь, что ты лжешь, и при этом ты говоришь правду, ты лжешь. Но если ты говоришь, что ты лжешь, и при этом ты лжешь, ты говоришь правду". Размышления над загадкой Лжеца привели Филета Косского к роковому концу, что явствует из следующей эпитафии: "Путник! Я — Филет из Кос. Загадка Лжеца причина моей гибели…" (53). Так он дал посмертную, а главное, свободную от дейктического выражения "объективную версию" знаменитого софизма. Единственное высказывание, создающее "объективную версию", которое не запечатлено над его могилой, это следующее: "Выгравированное над могилой Филета высказывание ложно". представьте эту надгробную надпись: если она истинна, то ложна, так как сама об этом заявляет; если она ложна, то истинна, так как сама говорит противоположное.


Анатолий Анисимов читать все книги автора по порядку

Анатолий Анисимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык отзывы

Отзывы читателей о книге Компьютерная лингвистика для всех - Мифы, Алгоритмы, Язык, автор: Анатолий Анисимов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.