My-library.info
Все категории

Дмитрий Менделеев - Заветные мысли

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Дмитрий Менделеев - Заветные мысли. Жанр: Публицистика издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Заветные мысли
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
21 февраль 2019
Количество просмотров:
189
Читать онлайн
Дмитрий Менделеев - Заветные мысли

Дмитрий Менделеев - Заветные мысли краткое содержание

Дмитрий Менделеев - Заветные мысли - описание и краткое содержание, автор Дмитрий Менделеев, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Работа «Заветные мысли» закончена Д.И. Менделеевым в 1905 году. В ней он говорит о желательных путях развития России: в геополитической, экономической и научной областях. Многие из идей великого ученого приобрели особую актуальность в настоящее время.

Заветные мысли читать онлайн бесплатно

Заветные мысли - читать книгу онлайн бесплатно, автор Дмитрий Менделеев

Приводимые далее числа (табл. 1) взяты не из последней переписи Штатов (1900), а из предшествующей, 11-й переписи 1890 г., так как тома последней переписи дошли до меня лишь недавно.

Таблица 1


По 11-й переписи, всех жителей в 1890 г. было 62,6 млн, но в их числе природных белых жителей от матерей и отцов, в Штатах родившихся, было только 34,3 млн, и вот они-то сочтены в нашем дальнейшем расчете (исключая лишь 47 тыс. жителей неизвестного возраста). В прилагаемой табл. 1 для Германии и Штатов приведены не только абсолютные числа в тысячах жителей каждого возраста, но и процентные количества лиц каждого возраста, чтобы дать легкую возможность сделать сличение. Ввиду сходства процентных чисел в последнем столбце дан средний процент возрастного состава.

Исходом в первом столбце служит возраст, считая 5 лет за единицу, и если стоит, например, число 30–35, то это значит, что табличное число показывает число жителей в возрасте более 30 лет, но менее 35 лет. Приводить же числа по годам, например от 1 года до 2 лет или от 30 до 31 года, было бы не только неудобно по множеству чисел, но и непоучительно, потому что какой-нибудь правильности можно ждать только от средних больших величин, а в мелочах и частностях можно подразумевать всегда мелкие неправильности, зависящие от множества обстоятельств, например от недородов в известные годы, от войн, от присоединения новых областей и т. п., что падает на определенные времена, отвечающие рождению лиц данного возраста. Такие частные влияния до некоторой степени сглаживаются, когда в таблицах приведено количество людей в возрасте, различающемся на 5 лет, как это сделано в прилагаемой таблице. Притом не подлежит сомнению, что точность показания возраста при переписях сравнительно невелика, так как точная проверка о возрасте каждого жителя совершенно невозможна.

Если же взять пятилетний промежуток, то, деля число жителей каждого возрастного периода на 5, мы получим число жителей в среднем возрасте, например из числа жителей 30–35 получим, деля на 5, число жителей в возрасте от 32 до 33 лет, что и обозначено далее чрез 33. При этом делается, конечно, предположение, что в течение 5 лет возрастание идет арифметически пропорционально годам, т. е. выражается линейным образом по годам. В частности, т. е. в узком пределе лет, это всегда можно допустить, принимая во внимание возможные погрешности каждого отдельного числа, отнесенного к году

Выражаясь алгебраически, всякую небольшую долю кривой линии можно представить в виде прямой линии. Но это, конечно, не относится ко всей совокупности чисел, потому что они выражаются не прямою, а кривою линиею, которая одна и представляет свой особый интерес, выражая собой изменчивые отношения между числом лет п и числом жителей данного возраста, которое мы означаем через у. Отношения этих чисел мы далее рассмотрим, приведя исходную таблицу. Оригинальные числа для Германии взяты из «Statistisches Jahrbuch für das Deutsche Reich für 1900», с. 3, а для Штатов – из «Abstract of the eleventh census 1890», c. 58.

Из приведенной табл. 1 видно, что относительное (процентное) число жителей разного возраста в Германии и Штатах чрезвычайно близко, отчего и можно было взять среднее и в этом среднем у, отнесенном к определенному году п, можно ждать уже сглаживания частных погрешностей отдельных переписей, потому что среднее относится к 85 млн жителей. Этого же среднего, до некоторой степени сглаженного результата можно достичь еще лучше, складывая первоначально абсолютные числа для Германии и Штатов и выводя из этой суммы указанный результат по годам n через 5 лет. Так и сделано во второй таблице, в столбце, обозначенном через y, выражая опять число жителей в процентах. Числа этого столбца, конечно, очень близки к числам последнего столбца предшествующей таблицы. Но в них все же должно ждать ряд разных мелких погрешностей, неизбежно свойственных как самим, так и рассчитанным из них результатам.

Полученные таким образом числа для у приведены в табл. 2 в столбце со знаком у. Сличение этих чисел с ранее выведенными показывает, что разность между ними очень невелика и касается только десятых долей процента, что допустимо уже по необходимости ждать в переписях лишь относительной точности, так как абсолютная точность ни в этих, ни в каких опытных числах по самому существу невозможна.

Таблица 2

Желая узнать сущность закона распределения жителей по возрастам, остановимся над соотношением полученных у и n. Для них необходимо ждать еще некоторых отступлений, зависящих в данном случае например от того, что в 60-х годах в Америке господствовала междоусобица между северными и южными штатами, а в то же время Германия вела войну с Австрией и к началу 70-х годов вела большую войну с Францией, что должно было нарушать не только стройность чисел рождаемости, но и смертность для лиц в зрелом военном возрасте, а это должно отразиться на числе жителей, родившихся в этих и следующих годах (т. е. для лиц, имеющих при переписи 30–40 лет), и на числе мужчин в возрасте около 50–60 лет, потому что они были во время этих войн в цветущей молодости, преимущественно падавшей во время войн. Не умножая подобных примеров, должно ясно сознавать, что наблюдение и расчет должны между собой немного отличаться, если отыскивается закон нормального распределения по возрастам, который один представляет свой научный интерес.

Но и указанные отступления от нормы не должны, по существу, превосходить некоторого, притом небольшого, предела; например, не должны касаться целых процентов, а ограничиваться их долями, потому что числа извлечены из целого числа миллионов, а отступления касаются только сотен тысяч. Сколько мне известно, еще никто не принимался за вопрос о нормальном законе распределения числа жителей по возрастам, и если я решаюсь приняться за такой трудный новый опрос, то лишь по той причине, что верю в закон больших средних чисел и в правильность всяких отношений, кажущихся на первый взгляд зависящими лишь от частной воли и от случайного сцепления обстоятельств. Эта уверенность внушена долгим изучением явлений природы, а оно приводит к заключению, что все крупное общее среднее всегда оказывается закономерным, хотя всегда состоит из ряда мелочей, носящих на первый взгляд капризный индивидуальный характер.

Максвелловская теория газов – лучший пример для этого, и я не упущу случая внушить молодежи склонность к изучению представлений, подобных максвелловским, если хотят разобраться в вопросах социологии. Не желая усложнять изложения, я ограничиваюсь этим намеком и обращаюсь к примеру распределения народонаселения по возрастам как к такому, в котором можно уже видеть значение общих крупных чисел и закономерную в них стройность. Ведь механику, физику, химию изучали вначале исключительно приемами качественными и описательными, причем были, в сущности, рабами действительной природы, а понемногу становятся ее господами, подмечая присущую явлениям этого рода закономерность. Ведь и там изучению подлежат лишь частности, и всякое измерение сопряжено с неизбежными погрешностями, а общее крупное оказывается состоящим из данного числа капризных мельчайших отдельностей, в крупном же общем среднем все эти мелкие капризы исчезают, и тогда выступает основной, Божеский закон, который один делает рабов действительными господами предпринимаемого и предстоящего.

Не только в переносном, но и в подлинном смысле отдельный человек есть не что иное, как атом, и в совокупности людей, т. е. в крупных числах, до них относящихся, должно ждать такой же простоты и правильности, как в числах, получаемых от так называемой мертвой природы. Вот одна из тех заветных моих мыслей, которую очень желательно мне внушить будущим поколениям русского юношества, приложение которой к действительности я желал бы демонстрировать при помощи данных о народонаселении, и прежде всего о распределении по возрастам. Беглый взгляд на графическое выражение зависимости между у и n показывает уже, что они расположены по стройной, или, как привыкли выражаться математически, правильной, кривой линии. Найти законность – значит найти алгебраическую зависимость между у и n, т. е. между возрастом и числом жителей этого возраста. Геометрические соображения простейшего свойства показывают, что первое приближение к истине получится уже тогда, когда эту зависимость представим в виде вертикальной параболы, т. е. выразим:

у = А + Вn + Сn2 (I)

где А, В и С – суть постоянные числа, а y и n – переменные (ординаты и абсциссы кривой). Ни одной минуты я не думаю, что такое выражение есть окончательное и вполне точное, утверждаю только, что оно очень близко удовлетворяет действительности и отступает от нее лишь на величины недалекие, подобные разностям между у 1-й и 2-й таблиц. Числа, разочтенные по формуле, приведены в последних столбцах табл. 2. Сходство вычисленных и наблюденных у наглядно показывает степень применимости вышеозначенной формулы.


Дмитрий Менделеев читать все книги автора по порядку

Дмитрий Менделеев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Заветные мысли отзывы

Отзывы читателей о книге Заветные мысли, автор: Дмитрий Менделеев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.