Ознакомительная версия.
Возникновение разума – следующий важный этап в развитии Вселенной и столь же сложный для объяснения современной наукой. Само понимание того, что мы называем разумом, меняется в процессе развития знаний. Декарт считал, что мышление и материя – две реальности, существующие независимо и объединенные лишь в Боге и человеке. Интересен современный подход, рожденный в уже упоминавшейся теории автопоэза. Суть ее в том, что развитие мира есть расширение взаимосвязей. Начинается все с физических связей между элементами мира: элементарные частицы объединяются в атомы, образуя химические элементы, атомы связываются, образуя химические вещества, и т. д. На сегодняшний момент благодаря возникновению человеческого сознания связи устанавливаются на уровне понятий – мы объединяем различные явления, находя между ними сходство, предлагаем законы, принципы, упорядочивающие наблюдаемый мир. Например, закон Кулона устанавливает связи между зарядами и силой их взаимодействия, а «заряд» и «сила» здесь не только характеристики физической реальности, но и понятия, отражающие свойства мира в нашем сознании. Чем выше качество связей, тем выше уровень разума, и разум, таким образом, выступает как неотъемлемое свойство мира. Развитие мира предстает в этой концепции как развитие разума, выражающееся в усложнении взаимосвязей.
Но вот что неясно: как же возникло это свойство материи – мыслить отвлеченными понятиями? Естествознание связывает это с развитием мозга, но об уровне понимания его устройства свидетельствует следующее высказывание академика РАН, научного руководителя Института мозга человека Н. П. Бехтеревой: «Всю свою жизнь я посвятила изучению самого совершенного органа – человеческого мозга. И пришла к выводу, что возникновение такого чуда невозможно без Творца».
Чего же не знает современная наука? Очень многого. Но это незнание со знаком «плюс»: оно дает импульс новым поискам и приводит к новым открытиям. Да, научное знание ограничено, но оно получено способом, подтвержденным практикой, и достаточно определенно понимается специалистами в данной области. Знание «ненаучное» безгранично, каждый может трактовать его индивидуально, опираясь на свой внутренний опыт, и на практике оно признается не всеми. Но противопоставлять знание научное и знание ненаучное не следует, продуктивным может быть только диалог. Каждый из нас волен решить сам, чему и в какой мере стоит доверять. Важно, чтобы эти решения не оставались абстрактной теорией, а определяли наши действия в подчас непростых жизненных ситуациях и тем самым приближали к истине. Иначе все мы будем похожи на путников, блуждающих без определенной цели.
Алексей Чуличков, д-р физ. – мат. наук, МГУ
Загадки нашего мира: время, пространство и материя
Привычное, прочное и устойчивое здание науки и представлений о мире в начале XX века рухнуло. Ему на смену приходит другое понимание, основанное на новых данных и наблюдениях и полностью переворачивающее наше видение мира. Но насколько новыми являются эти представления?
К концу XIX века было почти завершено здание классической науки, которая родилась из соединения опыта, полученного человеком в повседневной жизни, и логического вывода. Ее успехи были очень впечатляющими, и это породило иллюзию всемогущества человеческого разума. Законы классической физики резко противоречили традиционным представлениям о мире, которые содержатся в мифах и учениях древних мудрецов. Из-за этого мифы стали рассматриваться как забавные истории, не имеющие отношения к реальности, а учения философов интересны были лишь с исторической точки зрения.
Однако открытия XX века показали, что, когда речь идет о явлениях природы в масштабах, намного отличающихся от привычных для человека, не всегда можно достичь ясности и отчетливости интерпретации опытных данных, основываясь на логике и здравом смысле. Это масштабы атомных явлений, а также процессов, которые идут в космосе и охватывают звезды, галактики и их скопления.
От классической к релятивистской физике
В XVII веке Исаак Ньютон сформулировал концепцию пространства и времени классической физики. Согласно этой концепции, пространство и время обеспечивают абсолютную и неизменную невидимую платформу, которая дает Вселенной порядок и структуру. К концу XIX века на этой платформе было возведено здание классической физики. Стало казаться, что к этому времени большинство фундаментальных принципов природы прочно установлены.
Однако первое десятилетие XX века стало поистине революционным. Классические представления о пространстве, времени и реальности, которые до этого были привычными и интуитивно ясными, вдруг уступили место новым представлениям, трудно понимаемым и далеко не очевидным с точки зрения нашего повседневного опыта.
В нашем жизненном опыте нет места движениям с очень большими скоростями, такими, как скорость света (примерно 300 000 км/с). А тем не менее именно изучение свойств движения с такими скоростями привело к пониманию того, что классические представления об абсолютности пространства и времени невозможно применять для описания этих свойств. В результате как пространство, так и время перестали быть абсолютными, а стали обладать свойствами, зависящими от наблюдателя. В частности, результаты измерений расстояний и длительности оказываются различными для разных наблюдателей, если они движутся с разными скоростями относительно той сцены, на которой разворачивался физический процесс. Более того, эти результаты зависят и от массы тел, которые находятся рядом с этой сценой. Здание теоретической физики зашаталось, так как законам природы, описывающим явления в пространственной протяженности и временной длительности, грозила утрата универсальности.
Вернуть абсолютный характер физическим законам удалось Альберту Эйнштейну. Он предложил так называемый специальный принцип относительности, хотя и не очевидный с точки зрения повседневного опыта, но обладающий общностью и красотой математических следствий: все физические процессы (в инерциальных системах отсчета) протекают одинаково, независимо от того, неподвижен ли наблюдатель или находится в состоянии равномерного и прямолинейного движения. Как следствие этого принципа, скорость света для любого такого наблюдателя одинакова, независимо от того, движется он относительно источника света или покоится.
Новая физика строилась в четырехмерном пространстве-времени, в котором три координаты – привычные пространственные, а четвертая – время. Для разных наблюдателей мир выглядит по-разному (у каждого из них – своя пространственная и временная шкалы), однако во всех системах отсчета неизменной остается величина, связанная с координатами двух событий в пространстве и времени. Она зависит как от разности пространственных координат точек, в которых происходят эти события, так и от временного промежутка между ними. Эта величина получила название «релятивистский интервал». Постоянство этого интервала можно интерпретировать как неразрывную сплетенность пространства и времени. Новые формулировки физических законов позволили предсказать, какими пространственно-временными характеристиками будет обладать физическое явление для любого наблюдателя. Физическая картина мира усложнилась, но сохранила свое единство, хотя это единство и спрятано за ширму математических преобразований.
Еще одним следствием теории относительности стало открытие того, что энергия и масса взаимосвязаны и могут превращаться друг в друга. Это можно интерпретировать так, как будто эти две физические величины суть разные «ипостаси» единой энергии-массы. Это следствие стало основой атомной и ядерной энергетики и прекрасно подтвердилось в экспериментах.
Через несколько лет Эйнштейн расширил специальный принцип относительности до общего: в нем утверждается, что все физические законы протекают одинаково для любых наблюдателей – движутся ли они относительно наблюдаемой сцены равномерно, или с ускорением, или покоятся. Для этого ему пришлось постулировать, что силы гравитации и силы инерции, которые действуют на тело, движущееся с ускорением (относительно инерциальной системы отсчета), имеют единую природу, и объяснить ее искривлением пространства-времени, зависящим от массы окружающей материи. Это разрешило одну из загадок классической физики, в которой как в законе инерции (второй закон Ньютона), так и в законе всемирного тяготения используется одна и та же величина – масса тела.
В самом деле, мы привыкли, что любое тело, на которое не действует сила, движется по кратчайшему пути. Для пустого пространства эти пути суть прямые линии, в классической физике по таким прямым траекториям распространяется световой луч. Поэтому обычная евклидова геометрия – это геометрия пустого пространства. Однако наше физическое пространство заполнено массивными телами. Как показывает опыт, световые лучи искривляются под действием гравитации. А. Эйнштейн предложил заменить действие гравитации на искривление пространства.
Ознакомительная версия.