Ознакомительная версия.
В другом направлении исследований автор часто проводил опыты, поддерживая свечение в 50- или 100-вольтных лампах накаливания с любой требуемой силой света, присоединив обе клеммы каждой лампы к толстому медному проводу в несколько футов длиной. Эти эксперименты представляются достаточно интересными, но они являются таковыми не более, чем эксцентричный опыт Фарадея, который не забыт и часто проводится современными исследователями, и в котором получаемый разряд возникает между двумя концами согнутого медного провода. Будет уместно сослаться на эксперимент, который представляется столь же интересным. Если трубку Гейслера, клеммы которой соединены медным проводом, поместить рядом с катушкой, никто, конечно, не будет готов увидеть свечение трубки. Достаточно любопытно, что она всё-таки светится и, что еще более любопытно, провод, как кажется, не играет при этом большой роли. Хотя в первый момент вы склоняетесь к мысли, что это явление как-то связано с полным сопротивлением провода. Но эта идея, конечно, немедленно отвергается, так как для этого потребовалась бы огромная частота. Эффект, однако, вызывает недоумение только поначалу, потому что по размышлении становится совершенно ясно, что провод может играть лишь незначительную роль. Этому можно найти несколько объяснений, но, возможно, наиболее подходящим будет вывод, допускающий, что электрический ток от клемм катушки проходит через пространство. В соответствии с этим предположением — и пусть трубка с проводом находится в любом положении — провод забирает на себя часть тока, проходящего сквозь пространство, в котором находятся провод и металлические клеммы трубки; сквозь примыкающее пространство ток проходит практически без помех. Поэтому, если трубка перпендикулярна линии, соединяющей клеммы катушки, провод едва ли играет какую-либо роль, но, располагаясь более или менее параллельно этой линии, провод до определенной степени снижает яркость свечения трубки и ее способность светиться. Основываясь на этом предположении, можно объяснить многие другие явления. Например, если на концы трубки поставить пластинки в форме шайб достаточного размера и удерживать ее на линии, соединяющей клеммы катушки, она не будет светиться, и тогда почти весь ток, вместо того чтобы проходить сквозь пространство между пластинками, пойдет в обратном направлении по проводу. Но если наклон трубки относительно линии будет достаточным, она будет светиться, несмотря на наличие пластин. То же, если металлическую пластину укрепить на стеклянном стержне и удерживать под прямым углом к линии, соединяющей клеммы, сместив ее ближе к одной из них: трубка, расположенная более или менее параллельно с линией, тотчас же засветится, как только одна из клемм коснется платы, и погаснет, если клемма не касается ее. Чем больше поверхность пластины, до определенного предела, тем легче возникает свечение трубки. Когда трубка помещена под прямым углом к прямой, соединяющей клеммы, и затем поворачивается, ее свечение неуклонно возрастает, пока она не станет параллельной этой линии. Автор обязан, однако, заявить, что он придает идее утечки тока через пространство не больше значения, чем это необходимо для объяснения, потому что убежден в том, что все эти эксперименты не могли бы быть проведены с машиной постоянного тока, дающей постоянную разность потенциалов, а также в том, что к этому явлению имеет отношение действие конденсатора.
Целесообразно принять определенные меры предосторожности, используя катушку Румкорфа с переменными токами очень больших частот. Первичный ток не должен быть включенным слишком долго, иначе сердечник так сильно нагреется, что может расплавиться гуттаперча или парафин либо сгорит изоляция, и это может произойти в течение очень короткого времени, учитывая силу тока. Без большого риска первичный ток можно подать через тонкие провода; при этом полное сопротивление так велико, что будет трудно заставить ток достаточно большой силы пройти по тонкому проводу, чтобы не повредить его, и действительно, катушка может быть в целом намного безопаснее, когда выводы тонкого провода соединены, чем когда они изолированы; но особого внимания заслуживает момент, когда выводы присоединены к обкладкам лейденской банки, поскольку в какой-то момент при емкости, близкой к критической, которая противодействует самоиндукции, при существующей частоте катушка может испытать судьбу Св. Поликарпа. Если дорогой вакуумный насос начинает светиться вблизи катушки или касается одного из его проводов, ток можно оставлять включенным всего на несколько мгновений, иначе стекло лопнет от нагрева разреженного газа в одном из узких проходов, как в собственных опытах автора, — quod erat demonstrandum[5].
Есть еще достаточно большое количество других интересных вопросов, которые могут быть рассмотрены в связи с такой машиной. Эксперименты с телефоном, с проводником в сильном поле, конденсатором или дугой всё же позволяют сделать определенный вывод о том, что звуки, намного превышающие общепринятый предел слышимости, могут быть восприняты. Телефон будет издавать звуки частотой от двенадцати до тринадцати тысяч вибраций в секунду; затем начинает сказываться неспособность сердечника успевать за такой частотой колебаний. Однако если магнит и сердечник заменить конденсатором, а клеммы присоединить к вторичной обмотке трансформатора с высоким напряжением, можно услышать более высокие звуки. Если ток направить вокруг сердечника из тонких пластин и осторожно приложить небольшую пластину тонкого листового железа к сердечнику, можно услышать еще более высокий звук — от тринадцати до четырнадцати тысяч колебаний в секунду, при условии, что ток достаточно сильный. Маленькая катушка, однако, плотно зажатая между полюсами магнита, будет издавать звук с указанным выше числом колебаний, а излучение дуги находиться на более высокой частоте. Предел слышимости оценивается по-разному. В трудах сэра Уильяма Томсона заявляется десять тысяч колебаний в секунду или около того, и это является пределом. Другие, но менее надежные источники считают его равным более чем двадцати четырем тысячам. Описанные выше эксперименты убедили автора — звуки с несравнимо бóльшим числом вибраций в секунду будут восприниматься при условии, что они смогут прозвучать с достаточной силой. Нет оснований сомневаться: именно так всё и будет. Сжатия и разрежения воздуха неизбежно вызовут соответствующую вибрацию барабанной перепонки. В результате ухо испытает некое новое ощущение. Какой бы ни была — в определенных пределах — скорость передачи к нервным центрам, всё же есть вероятность, что из-за недостаточного опыта ухо не будет способно различить ни одного столь высокого звука. С глазом совсем другое дело: если зрительное ощущение основано на эффекте резонанса, как многие считают, никакое значительное увеличение интенсивности колебаний эфира не сможет расширить наш зрительный диапазон с обеих сторон от спектра видимости.
Предел излучаемых звуковых волн дуги зависит от ее размера. Чем больше поверхность, создаваемая тепловым эффектом в дуге, тем выше звук. Самые высокие звуки исходят от разрядов высокого напряжения индукционной катушки, когда в дуге действует, так сказать, вся поверхность. Если R — сопротивление дуги, С — ток и линейные размеры дуги возрастут в n раз, тогда сопротивление составит R/n, и при той же плотности ток будет составлять п2С, следовательно, тепловой эффект увеличится в n3, в то время как поверхность возрастет только в п2. По этой причине очень большие дуги не будут издавать какого-либо ритмичного звука даже с очень низкой частотой. Однако следует отметить, что издаваемый звук зависит также до некоторой степени от состава угольного электрода.
Если электрод содержит тугоплавкий материал, он при нагреве имеет свойство сохранять температуру дуги, следовательно, звук уменьшится; по этой причине представляется необходимым применение таких электродов для дуги переменного тока.
С токами высокой частоты можно получать бесшумные дуги, но регулирование лампы представляется чрезвычайно трудным делом при слишком слабом внимании или пренебрежении к положению проводников, передающих эти токи.
Интересной особенностью дуги, полученной от высокочастотных переменных токов, является ее устойчивость. Этому есть две причины, одна из которых присутствует всегда, вторая — только иногда. Первая обусловлена характером тока, а вторая — свойством машины. Первая причина более важна и обязана непосредственно частоте колебаний. Когда дуга формируется от тока, образующего волну через определенные промежутки времени, происходит соответствующее волнообразное изменение температуры газового столба и, как следствие, соответствующее волнообразное изменение сопротивления дуги. Но сопротивление дуги в огромной степени зависит от температуры газового столба, практически равно бесконечности, когда газ между электродами холодный. Поэтому стойкость дуги зависит от возможности сохранения температуры газового столба. По этой причине невозможно сохранять дугу с помощью тока малой частоты. С другой стороны, с практически постоянным током дуга легко удерживается, при этом в столбе постоянно поддерживаются высокая температура и низкое сопротивление. Чем выше частота, тем меньше времени для остывания дуги и значительно больше ее устойчивость. При частоте 10 000 и более колебаний в секунду сверхмалые колебания температуры в дуге накладываются на постоянную температуру, подобно зыби на поверхности глубокого моря. Тепловой режим практически постоянный, и дуга ведет себя так, как будто она создана постоянным током, за исключением, однако, того, что она может возникнуть не так быстро, а расход электродов будет одинаковым, тем не менее автор отмечал некоторые отклонения от нормы в этом отношении.
Ознакомительная версия.