Даже огромные современные научные лайнеры, оборудованные успокоителями качки, испытывают во время шторма неприятные минуты. Что же тогда говорить об исследовательских судах среднего и малого тоннажа?
Из физики моря известно, что с увеличением глубины погружения резко уменьшаются радиусы орбит вращения частиц воды. То есть силы, вызывающие качку, уменьшаются. На глубинах, составляющих примерно половину длины волны, волновое движение ослабляется настолько, что им практически можно пренебречь. Достаточно подводному судну во время шторма погрузиться на несколько десятков метров, чтобы попасть в обстановку относительного покоя. Я пишу «относительного» потому, что поверхностное волнение, как известно, может быть источником особого вида внутренних волн, влияние которых на подводные операции изучено еще недостаточно. Сейчас трудно анализировать причину явлений, с которыми мы встретились в Норвежском море и от которых нас отделяет много лет. Но, может быть, именно вызванные штормом внутренние волны заставляли «Северянку», укрывшуюся от непогоды на глубине 50 метров, время от времени накреняться то на один, то на другой борт до 5 градусов. Но это исключение. Обычно пребывание на глубине — это плавание в спокойной во всех отношениях обстановке, и подводники предпочитают погружение качке на поверхности. Погрузиться во время шторма и долго находиться под верхним штормовым слоем моря могут лишь автономные большие подводные лодки.
Еще в 30–х годах нашего столетия военные подводные лодки стали использоваться в качестве стабилизированных платформ для гравиметрических измерений, то есть определения силы тяжести в море. В основу намерений заложен принцип маятника, требующий спокойной обстановки. Таким способом выполнено не менее 6 тысяч измерений. Некоторые из них были сделаны по время посадки на дно, как, например, с исследовательской лодки «Триест». Эта лодка выполнила серию наблюдений на значительных глубинах впервые, а также проверила некоторые предшествующие наблюдения.
Итак, перечислены и более или менее детально рассмотрены основные доводы в пользу применения для исследовательских работ подводных судов. К сожалению, их справедливость разделяется пока не всеми океанологами. Правда, скептиков со временем становится меньше. Но интересно то, что среди несогласных нет ни одною, кто или в подводной лодке, или в гидростате, или просто с аквалангом опускался бы под воду.
Те же, кому удалось поработать и на палубе надводного исследовательского судна, и в тесном отсеке субмарины, всегда высказываются в пользу более широкого применения подводных лодок для изучения океана.
Говорят, что достаточно одного погружения, чтобы превратить обычного, то есть надводного, океанолога в подводного. Именно это и случилось, например, с моими коллегами по «Северянке» гидрооптиком О. А. Соколовым, ихтиологами Д. В. Радаковым и Б. С. Соловьевым, морским геологом Д. Е. Гершановичем и многими другими, «прикоснувшимися» к подводному миру и безоговорочно признавшими научную силу глубинного судна.
Конечно, полная реализация всех названных возможностей в каждом конкретном случае будет зависеть от технических характеристик и научного оборудования отдельной реальной подводной лодки. Сегодня еще не существует подводного корабля, который бы по своим качествам полностью удовлетворял всем пяти выдвинутым положениям.
Впрочем, верно и другое: по существу, нет и надводного судна, которое удовлетворяло хотя бы одному из них. Создание в будущем такой универсальной лодки, которая «может все», — это не фантастика, а разрешимая техническая проблема, хотя и достаточно сложная. Другой вопрос — есть ли необходимость в таком многоцелевом средстве. А может быть, правильнее создавать лодки, специализированные для выполнения узкого круга научных задач? Сделать это легче, дешевле, и поэтому второй путь представляется сейчас более правильным.
И при всем этом нужно помнить, что пока подводные лодки, способные погружаться на километровые глубины, не могут быстро и долго плавать в горизонтальном направлении. И наоборот, для способных к длительному подводному плаванию лодок большие глубины недостижимы. Большинство же исследовательских лодок не может ни глубоко погружаться, ни долго и быстро плавать. Кроме того, их работа в море связана с целым рядом ограничений, влияющих на эффективность использования. Поговорим об эффективности.
Создание исследовательских подводных лодок без учета океанологических факторов в районе их будущего действия приводит к неудаче. Деньги оказываются выброшенными на ветер, и, самое главное, пропадает вера в подводную лодку. Некоторые конструкторы забывают, что важна не сама подводная лодка с теми или иными техническими характеристиками, а то, какой эффект позволяют получить эти характеристики в районе плавания. Английским инженерам пришлось убедиться в этом на горьком опыте. В 1967 году ими была построена малая исследовательская подводная лодка «СЭРВ», кстати, единственная в то время в Англии. Лодка имела рабочую глубину 300 метров, экономическую скорость хода 0,5 узла, максимальную — всего 2,5 узла и предназначалась для работы в прилегающих водах, изобилующих сильными течениями. Нет ничего удивительного, что она уже в 1969 году была выведена из эксплуатации как недееспособная. Лодка стоила 40 тысяч фунтов стерлингов, а обеспечивающая плавбаза, заказанная в США, — 2,5 миллиона долларов.
О более ранней неудачной попытке применить подлодку для научных наблюдений мы уже упоминали, говоря о плавании «Наутилуса» в 1931 году. Идея плавания принадлежала Вильямуру Стефансону, который почему‑то посчитал, что в Ледовитом океане летом на подводной лодке можно пройти куда угодно и произвести ценные наблюдения. Основанное на незнании технических возможностей подлодки тех лет заблуждение, помноженное на неукротимую энергию загоревшегося идеей организатора экспедиции Уилкинса, привело, как известно, к авантюре.
Рассмотренные примеры не исчерпывают, конечно, всей проблемы эффективного применения подлодок для исследовательских целей. Показателей может быть гораздо больше — и не менее существенных. Очень важно, например, учитывать технические возможности системы «подлодка — плавбаза» и географические особенности района.
Например, можно ввести показатель, который связан с удаленностью точки погружения лодки от места якорной стоянки (или дрейфа) плавбазы. Обычно ночью плавбаза с подлодкой на борту отстаивается на якоре там, где глубина позволяет это сделать. Утром же плавбаза транспортирует лодку к месту работы. Если экспедиция проходит в открытом море, где не всегда можно найти якорную стоянку, плавбаза ночью может лечь в дрейф.
Потеря времени на непроизводительные переходы плавбазы налагается на рабочее время. Так, для подводной лодки «Элвин» и ее судна–носителя «Лулу», имеющего скорость 6 узлов, потеря времени на переходы составила 20 процентов от числа пригодных для работы дней.
И наконец, еще одна группа — это показатели эффективности технического, а иногда и организационного характера.
Сюда можно ввести показатель эффективности по энергоресурсам. Он связывает время, которое лодка может идти под водой с заданной скоростью, то есть автономность малой подлодки по движению, с минимальным временем, необходимым для выполнения программы одного погружения.
Бюро промышленного рыболовства США арендовало канадскую исследовательскую подлодку «Пайсиз» для рекогносцировочных погружений у Пьюджет Саунд (западное побережье США). Одной из конкретных задач были подводные наблюдения за движением рыболовного трала в толще воды. Но провести их не удалось. Как показывает опыт «Северянки», здесь требовалось сложное и длительное маневрирование (повороты за постоянно ускользающим из поля зрения тралом, частое изменение хода при отставании или опережении), на которое «Пайсиз» оказалась неспособна. Застой картушки магнитного компаса во время поворотов не позволял контролировать правильность курса, а незначительная по емкости аккумуляторная батарея быстро разряжалась. Наш собственный опыт дает основание утверждать, что для подробного наблюдения и киносъемки трала с «Северянки» на одно погружение требовались не минуты или десятки минут, а долгие напряженные часы.
Итак, на деятельность исследовательских подводных лодок влияют различные факторы, и мы попытались в какой‑то мере проанализировать это влияние. Речь шла об элементах, воздействующих на лодку. Но, оказывается, и сама лодка вносит возмущения в окружающую ее среду. Природа некоторых из них изучена достаточно хорошо, другие требуют детального исследования (возможно, опять‑таки с помощью подводных лодок). Мы не склонны преувеличивать или преуменьшать значение подводной лодки как возмущающего фактора. В каждом отдельном случае нужно подходить дифференцированно. Но это ее свойство может снизить эффективность применения во многих направлениях исследований. Поэтому остановимся на этом вопросе подробнее.