Ознакомительная версия.
Относительно экспериментов с лампой накаливания и нитью накала, установленной на одиночном проводе, профессор Томсон решительно утверждает, что он совершенно не может согласиться со мной, что проводимость сквозь стекло имеет какое-либо отношение к наблюдаемому явлению. Он упоминает хорошо известный факт, что лампа накаливания действует так же, как лейденская банка, и говорит, что «если бы проводимость сквозь стекло была возможной, этот эффект не мог бы проявиться». Я думаю, что могу с уверенностью утверждать, что очень немногие электротехники согласятся с этой точкой зрения. Чтобы емкостный эффект мог осуществиться, необходимо лишь, чтобы скорость, с которой заряды способны равномерно проникать через стекло благодаря проводимости, была бы несколько ниже скорости, с которой они накапливаются.
Профессор, по-видимому, считает, что проводимости сквозь стекло не существует. Но разве он никогда не измерял сопротивление изоляции? И разве не с помощью тока проводимости? Неужели он считает, что среди существующих физических тел есть идеальный изолятор? Разве он не понимает, что в связи с проводимостью вопрос может стоять только о ее степени? Если бы стекло было абсолютным изолятором, как мы могли бы объяснить утечку в стеклянном конденсаторе, когда на него воздействует постоянная разность потенциалов?
Хотя это и не связано напрямую с данной полемикой, я хотел бы здесь указать на то, что существует распространенная ошибка относительно свойств диэлектриков. Многие электротехники часто путают теоретический диэлектрик Максвелла с применяемыми на практике диэлектриками. Они всё еще думают, что единственным идеальным диэлектриком является эфир, а все остальные тела, о существовании которых нам известно, должны быть проводниками, судя по их физическим свойствам.
Мое утверждение, что в описанном выше опыте речь идет о некоторой, возможно, незначительной, проводимости, было сделано не только на основании того, что все вещества в большей или меньшей степени являются проводниками, но главным образом из-за нагрева стекла в ходе эксперимента. Профессор Томсон, видимо, не учел, что изолирующая способность стекла очень сильно ослабевает с повышением температуры, тем более что расплавленное стекло является сравнительно неплохим проводником. В своем первом ответе профессору в номере от 18 марта я, кроме того, изложил, что такой же эксперимент можно провести при постоянной разности потенциалов. В этом случае необходимо допустить, что в какой-то степени такой процесс, как проводимость стекла, имеет место, тем более что это можно продемонстрировать на опыте, в котором при достаточно высокой постоянной разности потенциалов сквозь стеклянный конденсатор с ртутным покрытием может проходить достаточное количество тока, чтобы засветилась трубка Гейслера, последовательно соединенная с конденсатором. При переменном напряжении проявляется влияние конденсатора и проводимость становится незначительной; проводимость тем слабее, чем выше частота чередований или изменений тока в единицу времени. Тем не менее, по моему мнению, проводимость существует всегда, особенно если стекло горячее, хотя слабая проводимость может иметь место при очень высоких частотах.
Далее профессор Томсон заявляет, что я, с его точки зрения, неправильно понял его высказывание о пределе слышимости. Он говорит, что от 10 000 до 20 000 полуволн соответствуют 5 000-10 000 полных звуковых колебаний. В своем ответе (в номере от 18 марта) я избегал прямого подчеркивания ошибки, допускаемой им, но теперь не вижу другого выхода. Профессор, надеюсь, извинит меня, если обращу его внимание на явление, которому он, по-видимому, не придал значения, а именно на то, что от 10 000 до 20 000 полуволн колебаний тока в дуге — что и было предметом обсуждения — означают не 5 000-10 000, а от 10 000 до 20 000 полных звуковых колебаний.
Профессор говорит, что я поддержал или предложил идею считать пределом слухового восприятия 10 000 колебаний в секунду, но я этого не делал. С его утверждением, что я экспериментировал со звуками от 5 000 до 10 000 полных колебаний, категорически не могу согласиться. По его мнению, это ниже предела слышимости, а в качестве аргумента приводит ссылку на то, что, экспериментируя в старших классах в Central High School в Филадельфии, он воспринимал 20 000 колебаний в секунду. Однако полностью проигнорировал особенность, на которой я подробно останавливался, а именно на том, что пределом слышимости дуги является нечто совершенно иное, чем предел слышимости вообще.
В ответ на некоторые мои суждения относительно машин с постоянной величиной тока Томсон описывает ситуацию, как пять или шесть лет тому назад ему пришло в голову испытать конструкцию динамо-машины с постоянной величиной тока, в которой «имелись весьма эффективные якорные обмотки, то есть сравнительно короткий провод для получения напряжения, и которые вращались в сильном магнитном поле». Снаружи обмотки и вне поля он поместил в цепь каждой обмотки дроссель, который состоял из железного сердечника, обмотанного проводом значительной длины и соединенного напрямую в цепь с якорной обмоткой. Таким образом он добился, как считал, «проявления значительной самоиндукции наряду с эффективной генерацией тока». Профессор ожидал, что «результаты, возможно, будут во многом совпадать с теми, которые могут быть получены при использовании машин обычной конструкции». Но он был разочарован. При всём уважении к нему я должен сказать, что надеяться на хороший результат при такой комбинации было весьма оптимистично. Земля не дальше от небес, чем предлагаемое устройство от того, где используется провод достаточной длины, намотанный на якоре, чтобы создать самоиндукцию и выработать необходимую ЭДС, вместо этого производится противоположный эффект, не говоря уже о потерях в железных сердечниках. Конечно, будет справедливо напомнить, что этот эксперимент был проведен пять или шесть лет тому назад, когда даже передовые электротехники испытывали недостаток в необходимой информации по этим и другим вопросам.
Профессор Томсон, видимо, считает, что самоиндукция уничтожает периодические волнообразные колебания тока. Однако самоиндукция ничего подобного не совершает, она, если хотите, делает волнообразные колебания более резко выраженными. Это очевидно. Давайте подключим катушку самоиндукции в цепь, по которой проходит переменный ток, и посмотрим, что произойдет. Во время наибольшей скорости изменений, когда ток имеет небольшую величину, самоиндукция оказывает большее сопротивление, чем во время малой скорости изменений, когда ток достигает максимальной или близкой к ней величины. Следствие — при той же самой частоте максимальная величина тока становится тем больше, чем сильнее самоиндукция. Так как звук в телефоне зависит только от максимальной величины, очевидно, что самоиндукция и есть то, что требуется для телефонной цепи. Чем сильнее самоиндукция, тем громче и яснее звучит речь, при условии, что ток в цепи имеет те же характеристики. Несколько лет деятельности в телефонии позволили мне достаточно хорошо изучить этот предмет. В вопросе о том, что катушка самоиндукции, включенная последовательно с телефоном, уменьшает громкость звука, Томсон, по-видимому, не учел того, что этот эффект целиком обязан полному сопротивлению катушки, т. е. ее свойству уменьшать силу тока. Но в то время, как сила тока уменьшается, волновая характеристика тока становится всё более резко выраженной. Очевидно, когда проводятся сравнения, они должны проводиться с тем же самым током.
Дуговые машины такого типа, с которыми работал профессор Томсон, действуют по-другому. Здесь вам придется иметь дело с замыканием и размыканием. В этом случае имеются два наведенных тока, один с противоположным, а другой с тем же направлением, что и главный ток. Если механизм предназначен для вышеупомянутой функции, то и с катушкой самоиндукции и без нее волновые колебания никак не могут быть сглажены. Но профессор, по-видимому, забыл, что этот эффект целиком обусловлен несовершенством коллектора, то есть наведенный ток прерывания, который имеет то же направление, что и главный ток, и высокую интенсивность, в случае большой самоиндукции просто соединяет смежные сегменты коллектора и если не полностью, то по крайней мере укорачивает интервал, во время которого цепь разомкнута, и таким образом ослабляются волнообразные колебания.
Что касается улучшения регулирования ламп с помощью вибраций или волнообразных колебаний, Томсон высказывается решительно. Теперь он считает, что вибрации должны улучшать регулирование ламп с часовым механизмом. Он говорит, что я «довольствовался только тем, что сказал», однако не могу согласиться с ним и в этом вопросе.
Так вот, «сказал» — это не единственное, что мною сделано. Я провел много ночей, отслеживая регулирование лампы, и оставляю за любым маститым экспериментатором право исследовать, верны ли мои утверждения. Мое мнение таково, что лампа с часовым механизмом, т. е. лампа, в которой опускание угольного электрода регулируется не зажимным или фрикционным механизмом, а с помощью анкерного механизма, не может регулироваться сколько-нибудь лучше, чем зубчатая передача, которая позволяет осуществлять перемещение, скажем, в 1/64 дюйма или менее того. Такая лампа регулируется почти тем же самым способом, независимо от того, будет ли ток идеально однородным или волнообразным, если только условия контура в других отношениях стабильны. Если в этом есть какая-либо выгода, она будет, я считаю, в использовании однородного тока, поскольку с волнообразным током лампа отключится на некоторое время и регулятор сработает больше чем на один зубец. Однако в лампе, где спуск угольного электрода регулируется фрикционным механизмом, волнообразный ток с должным количеством волновых колебаний в секунду всегда будет показывать лучший результат. Конечно, для того чтобы в полной мере получить выгоду от применения тока с волновым свойством, разъединение должно происходить независимо от движения вверх и вниз, на что я указывал ранее.
Ознакомительная версия.