My-library.info
Все категории

Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц]. Жанр: Публицистика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Как постепенно дошли люди до настоящей арифметики [без таблиц]
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
21 февраль 2019
Количество просмотров:
235
Читать онлайн
Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц]

Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц] краткое содержание

Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц] - описание и краткое содержание, автор Всеволод Беллюстин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ. Онъ же можетъ пригодиться и для педагога: для учителя крайне важно, чтобы расширился его кругозоръ, чтобы онъ могъ критически отнестись къ настоящему положенію преподаванія, и чтобы историческія данныя оживили обученіе и освѣтили его.Въ Германіи имѣется масса сочиненій по исторіи математики; очевидно, они нужны и полезны. Пусть же и въ Россіи мой небольшой трудъ сослужитъ свою скромную службу.О первомъ изданіи этой книжки данъ отзывъ въ «Вѣстникѣ воспитанія» I, 1908 г. и въ «Вѣcтникѣ опытной физики и элементарной математики», № 445. Она названа «интересной», «просто, ясно и кратко написанной».

Как постепенно дошли люди до настоящей арифметики [без таблиц] читать онлайн бесплатно

Как постепенно дошли люди до настоящей арифметики [без таблиц] - читать книгу онлайн бесплатно, автор Всеволод Беллюстин

Главное преимущество индусской системы заключается въ томъ, что значеніе каждой цифры вполнѣ опредѣляется ея мѣстомъ, т.-е. если, наприм., цифра стоитъ на 4-мъ мѣстѣ справа, то она выражаетъ тысячи, и, слѣд., чтобы написать тысячу, надо только поставить цифру 1 на 4-е мѣсто, но не перемѣнять ея формы и не припиеывать какого-нибудь особеннаго слова или значка. Въ глубокой древности встрѣчались и среди иныхъ народовъ геніальные умы, которые какъ-то смутно догадывались, что значеніе цифры лучше всего опредѣляетсяется мѣстомъ, но всѣ они становились въ тупикъ передъ такимъ сомнѣніемъ: а какъ же быть, если какой-нибудь разрядъ въ числѣ пропущенъ, напр., если число состоитъ только изъ единицъ и сотенъ и не содержитъ десятковъ? Чѣмъ замѣщать недостающіе разряды? Индусы отвѣчали коротко и ясно: надо замѣщать нулемъ. И мы теперь, когда отвѣтъ извѣстенъ, пожалуй, удивляемся, чего тутъ труднаго, и какъ же было не смекнуть; но жизнь доказываетъ лучше всякихъ словъ, что самыя простыя и общія идеи всегда и самыя мудреныя. Вотъ что говоритъ относительно этого извѣстный французскій математикъ Лапласъ:

«Мысль выражать всѣ числа 9-ю знаками, придавая имъ, кромѣ значенія по формѣ, еще значеніе по мѣсту, настолько проста, что именно изъ-за этой простоты трудно понять, насколько она удивительна. Какъ нелегко было прійти къ этой методѣ—мы видимъ ясно на примѣрѣ величайшихъ геніевъ греческой учености, Архимеда и Аполлонія, для которыхъ эта мысль осталась скрытой».

Всѣ величайшія открытія никогда не являются вдругъ и сразу, наоборотъ для нихъ необходима продолжительная подготовка. Какъ же могли индусы прійти къ идеѣ обозначенія чиселъ? какъ они придумали нуль? Вѣрнѣе всего послѣ счета нагляднаго, т.-е. счета на пальцахъ, камешкахъ и черточкахъ они перешли къ спеціальнымъ счетнымъ приборамъ, именно къ шарикамъ и косточкамъ на проволокахъ и шнурахъ; затѣмъ естественно было чертить колонны на пескѣ, дощечкахъ и бумагѣ и въ эти колонки или желобки класть тѣ же косточки и шарики. Дальнѣйшая ступень: въ колоннахъ чертятся значки или кладутся въ нихъ костяшки съ награвированными цифрами; теперь остался одинъ шагъ и до того, чтобъ цифрамъ придавать значеніе по мѣсту; дѣйствительно, если всѣ колонны заняты, то ихъ края, пожалуй, можно и стереть, потому что и безъ нихъ можно догадаться, что первая справа костяішка обозначаетъ единицы, сосѣдняя, т.-е. вторая, десятки и т. д. Получится гладкая, ровная поверхность, на которой подрядъ лежатъ костяшки, или начерчены значки; но какъ же быть съ той колонной, въ которой нѣтъ значка, потому что въ данномъ числѣ нѣтъ соотвѣтствующихъ единицъ? Подобную колонну стирать нельзя, потому что иначе смыслъ всѣхъ другихъ, лежащихъ влѣво, измѣнится, но ее-то одну именно и достаточно начертить, положимъ въ такой формѣ: || или II или 0. Слѣдовательно, нуль образовался изъ фигуры пустой колонны.

Вотъ тотъ нормальный путь, которымъ можно постепенно отъ счета на предметахъ придти къ нулю. Путь этотъ очень продолжителенъ. Нужны тьсячелѣтія, чтобы отъ пальцевъ перейти къ счетнымъ приборамъ, и отъ нихъ къ письму.

Цифры индусовъ произошли, навѣрное, отъ первыхъ буквъ числительныхъ именъ; это тѣмъ болѣе возможно, что 9 первыхъ числительныхъ именъ въ ихъ языкѣ (въ санскритскомъ языкѣ) всѣ начинаются съ различныхъ буквъ. Индусская система разстановки цифръ отъ правой руки къ лѣвой по разрядамъ ведетъ начало съ III ст. по Р. X. Арабы ее переняли въ VIII столѣтіи и принесли въ Европу въ IX вѣкѣ, но до XIII вѣка она распространялась въ христіанскихъ государствахъ очень слабо, потому что сначала, какъ и все новое, была встрѣчена съ недовѣріемъ и съ трудомъ проникала въ народную массу. Нулемъ индусы стали пользоваться гораздо позже, около VІІ-го или VШ-го вѣка по Р. X. и во всякомъ случаѣ не ранѣе V-го. Опредѣленное извѣстіе о нулѣ мы встрѣчаемъ въ первый разъ въ 738 г. по Р. X.

Наши цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 получили, какъ признаетъ болынинство ученыхъ, начало отъ индусовъ, но это вовсе не значитъ, что цифры индусовъ имѣли именно такой видъ, какой онѣ имѣютъ у насъ.

Въ теченіе вѣковъ, переходя отъ народа къ народу и отъ ученаго къ ученому, измѣняясъ подъ вліяніемъ практики и удобства, онѣ успѣли почти совершенно потерять свою прежнюю форму и вылиться въ новую, непохожую; отъ старинныхъ первоначальныхъ индусскихъ цифръ остались только слабые намеки въ цифрахъ 1, 5, 8, да и то послѣдняя цифра писалась въ горизонтальномъ положенiи, вмѣсто вертикальнаго; но во всякомъ случаѣ совершенно возиожно прослѣдить, какъ изъ первоначальныхъ фигуръ постепенно получились дальнѣйшія; и вотъ эта-то возможность прослѣдить и доказываетъ намъ, что цифры получили начало у индусовъ. Въ XIII столѣтіи, когда индусская система сдѣлалась извѣстной всѣмъ европейскимъ математикамъ, мы видимъ 1, 3, 6, 8, 9, 0 въ той самой формѣ, въ какой онѣ употребляются и теперь, а остальныя четыре цифры не похожи на наши нынѣшнія. Въ XV столѣтіи окончательно выработались цифры 2 и 4, но 7 упорно продолжало писаться въ видѣ ижицы или угла. 5 дольше всѣхъ не получало нынѣшняго своего облика и продолжало изображаться схоже съ 4-мя. Едва въ XVI столѣтіи можно въ первый разъ встрѣтить систему 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 въ ея нынѣшнемъ, всѣмъ намъ извѣстномъ видѣ. Всю эту измѣнчивость цифръ легко объяснить тѣмъ, что до 1471 года, когда было отпечатано въ первый разъ математическое сочиненіе типографскимъ шрифтомъ, всѣ книги переписывались ручнымъ способомъ, и вліяніе переписчиковъ на измѣненіе формъ цифръ могло быть громаднымъ. Кромѣ того, надо принять во вниманіе, что развитіе цифровыхъ фигуръ шло въ теченіе многихъ сотенъ лѣтъ, и въ немъ принимали участіе почти всѣ образованные народы того времени. И если въ наши дни, когда образованіе достигло высокой степени объединенія, когда печатные шрифты получили устойчивую форму, все-таки замѣчается разнообразіе въ печатныхъ буквахъ и въ различныхъ почеркахъ, то, тѣмъ болѣе оно должно было проявляться въ средніе вѣка, когда произволу переписчиковъ открывалась широкая возможность. (Образцы различныхъ типовъ цифръ мы помѣщаемъ въ приложеніи 10-мъ въ концѣ книги).

Итакъ, мы изложили, какъ постепенно изъ индусскихъ цифръ образовались наши нынѣшнія. Однако же не всѣ ученые согласны съ тѣмъ, что дѣло шло именно такъ, а не иначе. Нѣкоторые изъ нихъ обратили вниманіе на то, что первыя 4 цифры древнихъ египтянъ, которыми выражаютъ порядковыя числительныя, и, кромѣ того, цифра 9 сильно напоминаютъ индусскія цифры. Если это такъ, то, значитъ, изобрѣтателями цифръ скорѣе надо счесть египтянъ, а не индусовъ. На это мы отвѣтимъ слѣдующее: подобное предположеніе очень возможно, тѣмъ болѣе, что есть въ исторіи намеки на какой-то древнѣйшій, миѳичеекій народъ—кушитовъ, обитателей Эѳіопіи и южной части Аравіи, они легко могли быть посредниками между Египтомъ и Индіей и передать цифры отъ египтянъ къ индусамъ.

Второе возраженіе ученыхъ касается того, что истиннымъ посредникомъ въ переносѣ индусскихъ цифръ въ Европу можно бы считать греческаго ученаго Пиѳагора, жившаго за 500 лѣтъ до Р. X. Въ такомъ случаѣ изобрѣтеніе цифръ отодвигается очеиь далеко. И это предположеніе опять можно допустить, потому что есть преданіе, что Пиѳагоръ много путешествовалъ, заходилъ въ далекіе края Азіи и вывезъ оттуда немало цѣнныхъ научныхъ изобрѣтеній. Но съ другой стороны, гораздо лучше дать вѣру иному предположенію, именно, что цифры индусовъ заимствовалъ не Пиѳагоръ, а его позднѣйшiе ученики, такъ наз. новопиѳагорейцы, жившіе въ Александріи, въ Египтѣ, во II–III ст. по Р. X. Они согласно этому предположенію сообщили цифры арабамъ, властителямъ сѣвернаго берега Африки и Испаніи, — маврамъ, а отъ арабовъ могли заимствовать испанцы и итальянцы.

Послѣдняя догадка, касающаяся нашихъ цифръ и, надо сказать, очень неосновательная, хотя и распространенная, заключается въ слѣдующемъ.

Будто бы каждая цифра образовалась изъ столькихъ точекъ или изъ столькихъ черточекъ, сколько въ этомъ числѣ единицъ. Если такъ, то цифра 4 состоитъ изъ Ч,

Но этого никакъ не можетъ быть, потому что это чрезвычайная натяжка и одна только игра остроумія. Такимъ путемъ можно всякую цифру привести къ столькимъ черточкамъ или точкамъ, къ сколькимъ угодно.

Конечно, единица подходитъ подъ эту гипотезу, и римскія цифры I, II, III, ІІІІ совершенно соотвѣтствуютъ ей, но съ индусскими цифрами ничего не сдѣлать. Лучшимъ же доказательствомъ несообразности является историческое развитіе цифръ, при которомъ онѣ много, много разъ мѣняли свою форму, дѣлались неузнаваемыми, походили одна на другую, и только точное изслѣдованіе историковъ могло разобраться и доказать, какъ изъ одной первоначальной формы вылилась другая окончательная, путемъ многихъ и долгихъ преобразованій. Да и странно было бы думать, что изобрѣтатели цифръ такіе глубокіе мудрецы, что вложили въ каждую цифру таинственный символъ и образовали цифры изъ соотвѣтствующаго числа черточекъ и точекъ.


Всеволод Беллюстин читать все книги автора по порядку

Всеволод Беллюстин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Как постепенно дошли люди до настоящей арифметики [без таблиц] отзывы

Отзывы читателей о книге Как постепенно дошли люди до настоящей арифметики [без таблиц], автор: Всеволод Беллюстин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.