My-library.info
Все категории

Мартин Гарднер - Математические чудеса и тайны

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Мартин Гарднер - Математические чудеса и тайны. Жанр: Развлечения издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математические чудеса и тайны
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
20 октябрь 2019
Количество просмотров:
262
Читать онлайн
Мартин Гарднер - Математические чудеса и тайны

Мартин Гарднер - Математические чудеса и тайны краткое содержание

Мартин Гарднер - Математические чудеса и тайны - описание и краткое содержание, автор Мартин Гарднер, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Математические чудеса и тайны читать онлайн бесплатно

Математические чудеса и тайны - читать книгу онлайн бесплатно, автор Мартин Гарднер

Объясняется этот фокус просто. Пятерки карт нужно собирать начиная от первого зрителя, сидящего слева от вас, и далее по часовой стрелке (карты держат лицевой стороной книзу); карты показывающего будут при этом последними и окажутся сверху пачки. Затем все карты раскладываются в кучки по пяти карт в каждой. Любая из кучек может быть открыта зрителям.

Теперь, если задуманную карту видит зритель номер два, то эта карта будет второй, считая сверху кучки.

Если свою карту видит четвертый зритель, она будет четвертой в кучке. Иными словами, местоположение задуманной карты в кучке будет соответствовать номеру зрителя, считая слева направо вокруг стола (т, е. по часовой стрелке). Это правило имеет силу для любой кучки.

После небольшого размышления становится ясным, что в рассматриваемом фокусе, точно так же как и в предыдущем, применяется один и тот же принцип с пересечением рядов. Однако в последней варианте «пружинка» замаскирована гораздо лучше, благодаря чему получается значительно больший внешний эффект.

На ближайших страницах мы остановимся на тех фокусах, которые могут показаться более оригинальными или занимательными; при этом мы постараемся проиллюстрировать как можно больше математических принципов, на которых они могут быть основаны.

Карты как счетные единицы

Здесь мы рассмотрим только те фокусы, в которых карты используются как однородные предметы независимо от того, что изображено на их лицевой стороне.

Собственно, здесь нам подошел бы любой набор небольших предметов, например камешков, спичек или монет, однако лучше всего воспользоваться все-таки картами, потому что их удобнее держать в руках и считать.


Угадывание числа карт, снятых с колоды

Показывающий просит кого-нибудь из зрителей снять небольшую пачку карт сверху колоды, после чего сам тоже снимает пачку, но с несколько большим количеством карт. Затем он пересчитывает свои карты.

Допустим, их двадцать. Тогда он заявляет: «У меня больше, чем у вас, на четыре карты и еще столько, чтобы досчитать до шестнадцати». Зритель считает свои карты. Допустим, их одиннадцать. Тогда показывающий выкладывает свои карты по одной на стол.

Считая при этом до одиннадцати. Затем в соответствии со сделанным им утверждением откладывает четыре карты в сторону и продолжает класть карты, считая далее; 12, 13, 14, 15, 16. Шестнадцатая карта будет последней, как он и предсказывал.

Фокус можно повторять снова и снова, причем число откладываемых в сторону карт нужно все время менять, например одни раз их может быть три, другой — пять и т. д. При этом кажется непонятным, как показывающий может угадать разницу в числе карт, не зная числа карт, взятых зрителем.

Объяснение. В этом тоже несложном фокусе показывающему совсем не нужно знать числа карт, имеющихся на руках у зрителя, но он должен быть уверенным, что взял карт больше, чем зритель. Показывающий считает свои карты; в нашем примере их двадцать. Затем произвольно берет какое-нибудь небольшое число, скажем четыре, и отнимает его от 20; получается 16. Затем показывающий говорит: «У меня больше, чем у вас, на четыре карты и еще столько, чтобы досчитать до шестнадцати». Карты пересчитываются, как это объяснялось выше, и утверждение оказывается справедливым[2]).

Использование числовых значений карт

Фокус с четырьмя картами

Колода карт тасуется зрителем. Показывающий кладет ее в карман и просит кого-либо из присутствующих назвать вслух любую карту. Предположим, что будет названа дама пик. Тогда он опускает руку в карман и достает какую-то карту пиковой масти; это, поясняет он, указывает масть названной карты. Затем он вытаскивает четверку и восьмерку, что дает в сумме 12 — числовое значение дамы.

Объяснение. Перед демонстрацией этого фокуса показывающий вынимает из колоды трефового туза, двойку черв, четверку пик и восьмерку бубен. Затем прячет эти карты в карман, запоминая их порядок.

Перетасованная зрителем колода тоже опускается в карман, причем так, чтобы отобранные четыре карты оказались сверху колоды. Присутствующие и не подозревают о том, что при тасовании колоды четыре карты уже были в кармане показывающего.

Числовые значения отложенных четырех карт образуют ряд чисел (1, 2, 4, 8), каждое из которых вдвое больше предыдущего, а в этом случае, как известно, можно, комбинируя их различными способами, получить в сумме любое целое число от 1 до 15.

Карта требуемой масти вытаскивается первой. Если она должна участвовать в комбинации карт, дающих в сумме нужное число, тогда ее включают в общий счет вместе с одной или несколькими картами, которые вытаскиваются из кармана дополнительно. В противном случае первая карта откладывается в сторону, а из кармана вынимается одна или несколько карт, необходимых для получения нужного числа.

При показе нашего фокуса случайно может быть названа и одна из четырех отобранных карт. В этом случае показывающий вытаскивает из кармана сразу ее — настоящее «волшебство»!

Встреченный нами в этом фокусе ряд чисел, из которых каждое последующее вдвое больше предыдущего, применяется и во многих других математических фокусах.


Удивительное предсказание

Кто-нибудь из зрителей тасует колоду карт и кладет ее на стол. Показывающий пишет название карты на листке бумаги и, не показывая никому написанного, переворачивает листок надписью вниз.

После этого на столе раскладываются 12 карт лицевой стороной вниз. Кого-нибудь из присутствующих просят указать четыре из них. Эти карты тут же открываются, а оставшиеся восемь карт собираются и кладутся под колоду.

Предположим, что были открыты тройка, шестерка, десятка и король. Показывающий говорит, что на каждую из этих четырех карт он будет укладывать карты из колоды до тех пор, пока не досчитает до десяти, начиная с числа, следующего за числовым значением данной карты. Так, например, на тройку придется положить семь карт, произнося при этом: «4, 5, 6, 7, 8, 9, 10»; на шестерку нужно будет уложить четыре карты; на десятку класть ничего не придется; фигурной карте в этом фокусе также приписывается числовое значение 10.

Затем числовые значения карт складываются:

3 + 6 + 10 + 10 = 29

Остаток колоды передается зрителю, и его просят отсчитать 29 карт. Последняя из них открывается. Листок с предсказанной заранее картой переворачивается, и написанное читается вслух. Конечно, там будет название только что открытой карты!

Объяснение. После того как колода будет перетасована, показывающий должен незаметно посмотреть, какая карта лежит внизу колоды. Именно эту карту он и предсказывает. Все остальное выходит само собой. После того как восемь из двенадцати карт будут собраны и положены под колоду, замеченная карта окажется по порядку сороковой. Если все операции, о которых говорилось выше, были выполнены правильно, мы неизменно будем приходить к этой карте[3]). То обстоятельство, что колода вначале тасуется, делает этот фокус особенно эффектным.

Интересно заметить, что в описанном фокусе, как и в других, основанных на том же принципе, показывающий может разрешить зрителю приписывать любые числовые значения валетам, дамам и королям.

Например, зритель может пожелать считать каждый валет тройкой, даму — семеркой, а короля — четверкой. Это никак не скажется на показе фокуса и может придать ему больше «таинственности».

Фокус, собственно, требует только одного: чтобы в колоде были 52 карты; какие это будут карты, не играет ни малейшей роли. Если все они будут двойками, фокус тоже получится. Это означает, что зритель может приписать любой карте новое значение, какое ему вздумается, причем это не повлияет на успех фокуса.


Фокус с задуманной картой

Несколько лет назад было предложено удивительное усовершенствование этого фокуса. Перетасовав колоду, показывающий выкладывает кучку в девять карт лицевой стороной вниз. Зритель выбирает одну из этих карт, запоминает ее и кладет на верх кучки.

Оставшаяся часть колоды кладется на кучку, и таким образом, замеченная карта оказывается девятой снизу.

Теперь показывающий берет катоду и начинает выкладывать карты по одной в кучку лицевой стороной кверху, считая при этом вслух в обратном порядке от 10 до 1. Если числовое значение положенной карты случайно совпадает с называемой цифрой (например, появилась четверка в то время, когда он произнес: «четыре»), то откладывание карт в эту кучку прекращается и начинается откладывание следующей кучки. Если же такого совпадения появляющейся карты и произносимого числа не произошло, то отсчитывание заканчивается на цифре 1 и кучка «бьется», т. е. накрывается следующей по порядку картой (лицевой стороной вниз), взятой сверху колоды.


Мартин Гарднер читать все книги автора по порядку

Мартин Гарднер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математические чудеса и тайны отзывы

Отзывы читателей о книге Математические чудеса и тайны, автор: Мартин Гарднер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.