My-library.info
Все категории

Неизвестен Автор - Мозг (сборник)

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Неизвестен Автор - Мозг (сборник). Жанр: Здоровье издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мозг (сборник)
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
25 октябрь 2019
Количество просмотров:
215
Читать онлайн
Неизвестен Автор - Мозг (сборник)

Неизвестен Автор - Мозг (сборник) краткое содержание

Неизвестен Автор - Мозг (сборник) - описание и краткое содержание, автор неизвестен Автор, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Мозг (сборник) читать онлайн бесплатно

Мозг (сборник) - читать книгу онлайн бесплатно, автор неизвестен Автор

То, что мы знаем о мозге - как это здесь показано, - говорит нам о двух вещах. Мозг явно настолько сложен, что возможности предсказывать его поведение только на основании изучения его частей еще слишком далеки, чтобы стоило принимать их во внимание. Эта же сложность служит нам предостережением, что если применяемый чистой психологией подход по принципу черного ящика не потерпит поражения, то это будет для него большой удачей. Психология необходима. Что делает организм в действительности, мы можем узнать, только наблюдая его. Однако одна только психология скорее всего окажется бесплодной. Она должна сочетать изучение поведения с параллельным исследованием того, что происходит внутри мозга. Хорошим примером служит исследование Р. Сперри и его сотрудников из Калифорнийского технологического института, проведенное у больных с "расщепленным мозгом", у которых нарушены связи между двумя полушариями большого мозга. Другим примером является применение дезоксиглюкозы для введения метки в те участки мозга, в которых уровень активности выше среднего, когда подопытное животное выполняет какую-нибудь задачу. Таким образом, изучение нейроанатомии и нейрофизиологии может сочетаться с исследованиями поведения. Мы должны изучать и структуру, и функцию, но изучать их внутри черного ящика, а не только снаружи.

Новичок в таких вопросах бывает рад, когда, отпрянув в ужасе от сложностей нейроанатомии, он потом обнаруживает, что этот предмет в последнее время стал одним из самых захватывающих в нейробиологии. Это объясняется тем, что хотя, вообще говоря, схема соединений мозга очень запутанна, но работы последнего времени показали, что эти соединения гораздо более упорядоченны, чем можно было думать

всего несколько лет назад. Такой переворот произошел в значительной мере благодаря новым экспериментальным методикам, пришедшим из биохимии, в частности благодаря использованию аминокислот, меченных радиоактивными изотопами, и фермента пероксидазы хрена для прослеживания связей, а также благодаря использованию меченой дезоксиглюкозы для тех участков, где нейроны особенно активны. Кроме того, плодотворным оказалось применение специфических антител для "окраски" определенного класса нейронов. Есть надежда, что эффективная новая методика моноспецифических (моноклональных) антител, которую только начали применять, даст еще больше для классификации нейронов по типам, имеющим определенное значение, и для обнаружения их трехмерного распределения. Однако задачи эти столь грандиозны, что, как можно сказать с большой долей уверенности, без разработки еще и других новых методов движение вперед будет медленным. Резкий подъем молекулярной биологии оказался возможным благодаря продуманным поискам новых методов (например, методов быстрого определения последовательности оснований в ДНК).

Подобно нейроанатомии нейрофизиология неуклонно развивается, особенно с тех пор, как появилась возможность регистрировать импульсацию отдельных нейронов, а не групп клеток. Хорошим примером этого служит классическая работа Хьюбела и Визеля на зрительной коре. Однако можно предполагать, что и здесь нужно будет изменить темпы. В частности, возможно, понадобится отводить активность многих нейронов одновременно и независимо друг от друга, используя для этого новые возможности, какие дает нам микроэлектроника. Это позволило бы также более эффективно изучать ответы на более сложные комбинации стимулов, например ответ на две или три параллельные линии в поле зрения, а не только на одну.

Как в нейроанатомии, так и в нейрофизиологии накопление новой информации идет медленно по сравнению с общим ее количеством, содержащимся в системе. Поэтому важная роль теоретической нейробиологии состоит не просто в попытках создать правильные и детальные теории нервных процессов (что может оказаться очень трудной задачей), но и в том, чтобы указать, какие свойства полезнее всего изучать и в особенности измерять, чтобы понять, какого рода теория требуется. Бесполезно требовать невозможного, например точной схемы соединений в одном кубическом миллиметре ткани мозга или определения характера импульсации всех нейронов в нем. Задача в том, чтобы установить, какая легко доступная информация была бы самой полезной, а также (что труднее), какие данные можно получить в разумные сроки, если ввести осуществимые новые методики. Иногда ясная формулировка требования - это уже полдела для понимания того, как его выполнить. Например, цены бы не было методике, которая позволила бы вводить в нейрон вещество, способное четко окрасить все связанные с ним нейроны и только их. То же самое относится к методу, при помощи которого можно было бы инактивировать все нейроны строго одного типа, сохраняя все остальные более или менее неизмененными.

Как далеко все это привело нас в настоящее время? Помещенные в данном выпуске статьи дают хорошее общее представление о достигнутых успехах. Чего заметно не хватает, так это широких идейных рамок, в пределах которых можно интерпретировать все эти различные подходы. В таком состоянии находились биохимия и генетика до того, как произошла революция в молекулярной биологии. Дело не в том, что большинство нейробиологов не имеют какого-либо общего представления о том, что происходит. Беда в том, что представление это не сформулировано точно. Стоит притронуться к нему, как оно разваливается. Если привести лишь несколько примеров, то природа восприятия, нейронные корреляты долговременной памяти, функция сна - все они носят такой характер.

Как же в таком случае следует строить общую теорию мозга? На ее пути стоят, по-видимому, три важных ограничительных условия. Первое - это природа физического мира. Повседневный мир, в котором мы живем, не является чем-то аморфным и беспорядочным. Он состоит из предметов, которые обычно занимают определенное пространство и которые, хотя и перемещаются относительно других предметов, сохраняют свои размеры и форму. Зрительно предмет обладает поверхностями, очертаниями, цветом и т. п. Он может испускать звук или запах. Не вникая в детали, безусловно можно ожидать, что какова бы ни была переработка информации, поступающей в мозг, она будет связана с инвариантами и полуинвариантами во внешнем мире, доступными органам чувств.

Эксперимент показывает, что так это и происходит, притом часто неожиданным образом. Хорошим примером является такого рода восприятие цвета, какое показано в опытах Э. Ленда (Е. Land). Можно было бы думать, что когда дело идет о большом цветном пятне, то воспринимается окраска света, который действительно исходит от пятна и падает на сетчатку. На самом же деле цвет в большинстве случаев создается сочетанием окраски света, падающего на предмет, и света, отражаемого поверхностью предмета. Как это ни удивительно, мозг способен извлекать эту последнюю информацию из поступающих зрительных сигналов. Она может в значительной степени компенсировать характер падающего света. То, что мы воспринимаем, больше соответствует отражению от поверхности, которое является свойством самого предмета.

Поразительная демонстрация такого рода феномена проводится в Эксплораториуме в Сан-Франциско, хотя в этом случае поверхности имеют разные оттенки серого - от почти белого до совершенно черного. Освещение, источник которого скрыт, здесь неровное - оно гораздо сильнее в нижней части экспозиции, чем в верхней. Один участок внизу выглядит очень черным, другой участок наверху кажется почти белым. С помощью узких трубок эти участки можно рассматривать каждый по отдельности. И если смотреть в них таким образом, то видно, что оба участка имеют в точности один и тот же оттенок серого. Когда моя жена - художница - у видела этот экспонат, она была поражена и заявила, что это фокус. Она не отдает себе отчета в том, что в известном смысле все, что она видит, это фокус, который показывает ей ее мозг.

Второе ограничительное условие налагается биохимией, генетикой и эмбриологией. Нервная система сделана не из металла или неорганических полупроводников, а из специализированных клеток. Импульс, бегущий по аксону, движется с умеренной скоростью по сравнению со скоростью света (даже несмотря на то, что нейрон может при помощи разных фокусов ускорять его движение); это ограничение налагается на него биохимией. Хотя важную роль в нейронной активности играют такие неорганические ионы, как натрий и калий, не вызывает удивления тот факт, что передача нервного импульса от одного нейрона к другому производится мелкими органическими молекулами, потому что многие такие молекулы синтезируются с легкостью. Удивительно то, что один и тот же медиатор действует в столь многих различных местах - ограничительное условие, вероятно, налагаемое эволюцией.

Дальний конец аксона находится далеко от ближайшего пункта синтеза белка (не считая митохондрий внутри аксона), и это обстоятельство может налагать ограничения на скорость, с которой в нем происходят некоторые биохимические изменения. Вероятно, существуют одни типы нейронных цепей, с которыми организм справляется сравнительно легко, и другие, которые для него непосильны. Насколько мы знаем, генам высшего животного может быть трудно придавать схеме нейронных связей большую точность, особенно если в схеме участвует очень много клеток. Например, точного распределения связей, необходимого для правильного стереоскопического зрения, трудно достичь без того благотворного влияния, какое оказывает некоторый контакт с реальным внешним миром, может быть, потому, что системы, связанные с двумя глазами, вероятно, не могут быть построены с требуемой точностью.


неизвестен Автор читать все книги автора по порядку

неизвестен Автор - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мозг (сборник) отзывы

Отзывы читателей о книге Мозг (сборник), автор: неизвестен Автор. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.