My-library.info
Все категории

Павел Власов - Беседы о рентгеновских лучах

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Павел Власов - Беседы о рентгеновских лучах. Жанр: Прочее домоводство издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Беседы о рентгеновских лучах
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
21 октябрь 2019
Количество просмотров:
234
Читать онлайн
Павел Власов - Беседы о рентгеновских лучах

Павел Власов - Беседы о рентгеновских лучах краткое содержание

Павел Власов - Беседы о рентгеновских лучах - описание и краткое содержание, автор Павел Власов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
   Власов П. В.   В58 Беседы о рентгеновских лучах. 2-е изд., М., "Молодая гвардия",1979. 222 с. с ил, (Эврика).   В пер.: 60 к. 100000 экз.   Казалось бы, рентгеновские лучи изучены и описаны столь полно, что очем-то новом, интересном, тем более загадочном тут не может быть и речи.Но, как ни странно, они все еще остаются таинственными невидимками, хотяисследуются с 1885 года. В мире звезд и атомов, клеток и организмов -всюду есть место поискам, призванным решить вопросы, а то и головоломныеуравнения со многими неизвестными, относящимися к рентгеновской радиации.Таков лейтмотив книги доктора медицинских наук П. Власова.   70302 - 017   078(02)-79 78-79- 4 111 000 000   535   ИБ N 1481   Павел Васильевич Власов   БЕСЕДЫ О РЕНТГЕНОВСКИХ ЛУЧАХ   Заведующий редакцией "Эврика" Н. Лазарев   Редактор Л. Антонюк   Младший редактор Л. Дорогова   Художник Ю. Аратовский   Художественный редактор В. Неволин   Технический редактор Г. Прохорова   Корректоры А. Долидзе, Е. Самолетова   Подписано к печати с матриц 09.01.79. А02003. Формат 84Х108 1/32.   Бумага типографская № 1. Гарнитура "Литературная". Печать высокая.Условн. печ. л. 11,76. Уч.-изд. л. 12,3. Тираж 100 000 экз. Цена 60 коп.Т. П. 1979 г., № 78. Заказ 28.   Типография ордена Трудового Красного Знамени издательства ЦК ВЛКСМ"Молодая гвардия". Адрес издательства и типографии: 103030, Москва, К-30,Сущевская, 21.

Беседы о рентгеновских лучах читать онлайн бесплатно

Беседы о рентгеновских лучах - читать книгу онлайн бесплатно, автор Павел Власов

Начнем с такого конца: нельзя ли покончить с неуправляемостью звезд? Не торопитесь со скепсисом:

речь ведь не о звездах сцены или спорта, которые порой бывают абсолютно неуправляемыми, а о настоящих небесных созданиях, подобных нашему дневному светилу.

Вот картина, нарисованная воображением не писателя-фантаста, а ученого-астрофизика. Почему бы не представить, что когда-то удастся (а может, уже и удалось какой-нибудь внеземной цивилизации) контролировать течение ядерных реакций в звездах? Естественно, не потехи ради, а с тем, чтобы противопоставить слепой стихии дальновидный разум. Предупреждать, например, самовольные вспышки и угасание солнц, лучше удовлетворять энергетические потребности человечества.

Так рассуждает профессор И. Шкловский. Физическая основа этой его действительно фантастической идеи - гипотетическая пока возможность создать сверхлазер, работающий на волне длиной около 10^-10 сантиметра, что соответствует одновременно рентгеновскому и гамма-диапазону. (Здесь как раз тот участок спектра, где они перекрывают друг друга на стыке.)

Если на Земле такой луч будет иметь поперечник в 10 метров, то на расстоянии в 10 световых лет - всего лишь 10 километров. При столь малой расходимости поток радиации сохранит такую плотность, концентрированность энергии, что проникнет в глубь термоядерной топки звезды и сможет, если надо, стимулировать горение.

Хорошенькое дело: шуровать этак в небесной "печке" сверхдлинной рентгеновской или гамма-"кочергой"!

Ну а если не замахиваться на столь грандиозную затею, которая скептикам наверняка покажется прожектерской? Идея остается заманчивой и при гораздо меньших масштабах ее реализации.

Когда (если, конечно) появятся термоядерные электростанции, их, как уже говорилось, будет целесообразно размещать в космосе. Не только потому, что там в готовом виде есть сверхглубокий вакуум, необходимое условие их работы. Дело еще и в другом: нужно предотвратить перегревание земной поверхности, чреватое катастрофическими последствиями. Энергию оттуда придется передавать по необычному "прямому проводу" - лучу, как бы с помощью электромагнитной рапиры, пронзающей атмосферу. При этом 4/з тепловых отходов останутся за пределами воздушного щита.

Рукотворные солнца, зажженные в межпланетном пространстве, тоже потребуют регулировки. Ясно, что они окажутся источниками мощной рентгеновской радиации, которая будет уносить тепло из их недр. А там должна поддерживаться температура в сотни миллионов градусов, не опускаясь ниже определенного критического уровня. Кто знает, может, и здесь понадобится лазерная "кочерга", чтобы мгновенно вводить ее в глубь топки и подогревать в нужных местах хрупкое облако плазмы.

А если не понадобится, она пригодится в других случаях на Земле. Для того, например, чтобы влиять на технологические процессы в обычном реакторе - химическом, не термоядерном. Могут возразить: но и так уже сегодня на них воздействуют рентгеновскими лучами! Притом успешно: стимулируют полимеризацию, крекинг и другие важные превращения веществ. Нужны ли здесь квантовые генераторы этой радиации?

Подобный скептицизм вроде бы небезоснователен:

подобных генераторов пока нет, и неизвестно, изобретут ли их вообще. Однако такой же точно была ситуация с обычными лазерами незадолго до того, как они стали реальностью не только теории, но и практики за несколько лет - с 1956 по 1961 год. А ныне прочно вошли в наш обиход.

Создать такие приборы, работающие в рентгеновском диапазоне, не менее заманчиво. Но конечно, и не менее сложно. Какими, например, должны быть для них резонаторы? В обычном лазере это обычные зеркала, расположенные лицом к лицу, параллельно друг другу. Многократно отражаясь от них и умножаясь лавинообразно, кванты света все больше пополняют и уплотняют свои ряды, пока не увеличат ударную мощь настолько, чтобы вырваться наружу через полупрозрачный экран. Но рентгеновскую радиацию недаром называют всепроникающей: она пройдет сквозь такие резонаторы, словно Алиса в Зазеркалье...

Тем не менее положение небезнадежно. Вспомним:

плоский камень, с силой брошенный по касательной к водной глади, отскакивает рикошетом, хотя потонул бы незамедлительно, если бы упал отвесно. Мы уже знаем, как действуют рентгеновские телескопы с зеркалами скользящего падения. Там достигается практически полное отражение от тщательно отполированной металлической поверхности. Тот же принцип используется и в рентгеновских микроскопах, дающих увеличение в 100 тысяч раз.

Есть и иные трудности, притом немалые. Недооценивать их нельзя, но и переоценивать тоже не стоит.

А вот другая перспектива - она уже становится реальностью. Можно взять обычный квантовый генератор и преобразовать его радиацию в ультрафиолетовую. Если делать ее все более жесткой, то вполне вероятно превратить и в рентгеновскую.

Лазерное излучение монохромно, как сказал бы художник, или монохроматично, как поправил бы физик. Согласимся и поспорим с обоими: оно действительно одноцветно (от "моно" - "единый" и "хрома" - "окраска"), но так или иначе это не вполне корректно, как заметил бы математик. Оно ведь может быть невидимым (скажем, инфракрасным).

Вот почему в таких случаях говорят: излучение характеризуется одной частотой. И опять-таки это не вполне точно. Ему на спектре соответствует не линия, а полоска, правда, сравнительно узкая. Примерно так же, как на шкале радиоприемника каждой станции отведен свой мини-диапазон пусть небольшой, но уловимой ширины.

Лишь после таких оговорок можно, наконец, сказать главное. В 1961 году выяснилось, что лазерное излучение способно удваивать свою частоту, проходя "через некоторые специально подобранные кристаллы".

Иными словами, вдвое укорачивать свою волну. Вскоре обнаружилось, что сократить ее длину можно и втрое и вчетверо...

Один из самых мощных лазеров - неодимовый.

Он работает на волне 1,06 10^-4 сантиметра. Если ее уменьшить вдвое (до 0,53 10^-4 сантиметра), незримая радиация (инфракрасная) превратится в видимую (зеленую). А если втрое (до 0,35 10^-4 сантиметра), - то в ультрафиолетовую.

Между тем возможно гораздо большее сокращение.

Скажем, в 9 раз. Тогда получится 0,12 10^-4 (или, что то же самое, 1,2-10^-5 сантиметра). А это уже у самой границы с рентгеновским диапазоном, который начинается с 10^-5 сантиметра.

Спрашивается: чем плохи обычные рентгеновские кванты, нужны ли еще и лазерные? При такой постановке вопроса придется ответить: рассматриваемые индивидуально, порознь, они ничем не отличаются друг от друга. Иное дело их поток в целом. Вместе взятые в такой компании они отличаются разительно.

Начнем с "одноцветности". Ее не обеспечивают рентгеновские трубки. Их "продукцию" приходится делать менее широкополосной с помощью специальных фильтров-монохроматоров, которые отсекают лишнее по краям, ограничивая остаток обычно пределами от 2-10^-8 до 6-10^-10 сантиметра. Можно сузить рамки, но это значит, что аппаратура, притом дорогостоящая, будет в еще большей степени работать на "отходы производства", изнашиваясь и потребляя электроэнергию высокого вольтажа Точь-в-точь как токарный станок, когда он снимает стружку в таком количестве, что от громадины-болванки остается фитюлька-заготовка.

И это еще полбеды.

Беда в том, что излучение от обычных источников (не исключая и радиоизотопных) никогда не превзойдет лазерное по своей плотности и остронаправленности. В первом случае кванты разлетаются веером, как дробь при выстреле из охотничьего ружья. Во втором они бьют в цель кучно, словно шрапнель, донесенная до мишени упакованной в пушечное ядро.

Допустим, там и тут одинаковы и калибр (монохроматичность), и количество (первоначальная интенсивность). Все равно качество будет неодинаковым.

В первом случае кванты движутся как бы рыхлой хаотической россыпью, во втором - тесно сомкнутыми рядами, которые до конца напоминают связку прутьев.

Отсюда и различные эффекты.

Можно ли увидеть на Луне "зайчик" от зеркальца, отразившего пламя разом вспыхнувшей коробки спичек? Казалось бы, чушь, не хватит ни дюжины, ни тысячи коробок, зажженных одновременно! Даже если сфокусировать свет от такого костра лучшей оптической системой. Между тем на лазерную локацию нашего естественного спутника затратили столько энергии, сколько выделяется десятком горящих спичек.

Известно, что на советском луноходе был установлен французский уголковый отражатель. Он стал мишенью для квантового генератора, с помощью которого точнее, чем когда-либо, измерено расстояние до Луны.

Световое пятно оказалось достаточно ярким. Именно потому, что его "посадил" концентрированный луч, какого не даст ни один обычный прожектор, даже нзимощнейший. Но даст прибор гораздо меньших размеров- лазер. В его вспышке, длящейся триллионную долю секунды, сконденсирована энергия в 100 миллиардов киловатт. Это в тысячи раз больше, чем у кругинейшей в мире электростанции - Красноярской ГЭС (6 миллионов киловатт).


Павел Власов читать все книги автора по порядку

Павел Власов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Беседы о рентгеновских лучах отзывы

Отзывы читателей о книге Беседы о рентгеновских лучах, автор: Павел Власов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.