My-library.info
Все категории

Владимир Карцев - Приключение великих уравнений

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Владимир Карцев - Приключение великих уравнений. Жанр: Прочее домоводство издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Приключение великих уравнений
Издательство:
неизвестно
ISBN:
нет данных
Год:
неизвестен
Дата добавления:
21 октябрь 2019
Количество просмотров:
228
Читать онлайн
Владимир Карцев - Приключение великих уравнений

Владимир Карцев - Приключение великих уравнений краткое содержание

Владимир Карцев - Приключение великих уравнений - описание и краткое содержание, автор Владимир Карцев, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Приключение великих уравнений читать онлайн бесплатно

Приключение великих уравнений - читать книгу онлайн бесплатно, автор Владимир Карцев

Оннеса интересовало, как будет изменяться электрическое сопротивление ртути в то время, когда ее температура снижается и достигает областей, близких к абсолютному нулю.

Господствующей в то время была следующая точка зрения: если температура образца снижается, то это в первую очередь означает, что кристаллическая решетка материала все меньше и меньше колеблется - вероятность того, что электрон - носитель электричества ударится о решетку и затормозит свое движение (грубо говоря, в этом сущность электрического сопротивления), будет становиться все меньше и меньше. Стало быть, с уменьшением температуры сопротивление образца металла должно уменьшаться и в принципе равняться нулю при нулевой абсолютной температуре.

Но в эксперименте достигнуть температуры, равной абсолютному нулю, невозможно, и поэтому ученые следили за ходом кривой электрического сопротивления при снижении температуры. Все измерения, проделанные на меди, серебре и других хороших проводниках электричества, полностью подтверждали вышеизложенную точку зрения. И вот тут-то замерзшая, отвердевшая ртуть "выкинула номер". Пока сопротивление измерялось в диапазоне 15, 10, 5 градусов Кельвина, все шло нормально, как и в других исследованных металлах. Оннес снизил температуру до 4,1° К, взглянул на прибор, с помощью которого измерялось сопротивление, и поразился: стрелка вольтметра указывала, что сопротивление образца равно нулю, хотя до температурного нуля оставалось еще больше четырех градусов!

Это было поразительно. Для физика исчезновение электрического сопротивления было равносильно исчезновению земли из-под ног. Под сомнение ставились такие ясные вещи, как закон Ома и уравнения Максвелла.

Оннес подумал, что прибор испортился, и включил вместо него запасной. Опыт повторили. Когда температура вновь была снижена до отметки 4,1°К, исследователи увидели, как стрелка прибора "прыгнула" к нулю. Это означало полное отсутствие электрического сопротивления у ртутного столбика.

Оннес и ассистировавший ему Хольст изготовили новый образец затвердевшей ртути - залили ртуть в тончайший стеклянный капилляр и затем заморозили его, получив, таким образом, необычайно тонкий и длинный ртутный столбик. Из электротехники известно, что такой образец должен иметь большое сопротивление. В новом опыте экспериментаторы решили использовать для измерений сверхчувствительный зеркальный гальванометр. Гальванометр в сочетании со специально изготовленным образцом должен был обнаружить хотя бы следы сопротивления.

Но не тут-то было. Вновь при температуре 4,1 градуса выше абсолютного нуля исследователи замечают внезапное "убегание" зайчика гальванометра. Несмотря на все предосторожности, сопротивление не появлялось - оно было равно нулю. Все говорило за то, что Камерлинг-Оннес и Хольст открыли неожиданное для них и для всех физиков мира явление.

И вот теперь Оннес опубликовал в "Сообщениях из Лейденской лаборатории" статью о своем открытии. Статья наделала много шуму. За ней последовали десятки новых сообщений, которые дополняли, подкрепляли и доказывали открытие Оннеса.

Выяснилось, что ртуть вовсе не является монопольной обладательницей свойства "сверхпроводимости". Некоторые другие металлы, такие, например, как свинец, олово, также становятся сверхпроводниками. Вопреки всеобщим ожиданиям, лучшие известные проводники электричества - медь и серебро, оказалось, вовсе не обладают таким свойством. Долгое время ни один физик не мог дать удивительному явлению теоретическое обоснование.

Факты были чрезвычайно интересны не только с точки зрения "чистой физики". Открытие сверхпроводимости сразу же вызвало к жизни множество заманчивых проектов, относящихся в первую очередь к области электротехники.

В 1911 - 1913 годах, о которых идет речь в нашем рассказе, электродвигатели, электрогенераторы были известны уже более полувека, а трансформаторы (их изобрели позже) - не один десяток лет. Срок достаточен для того, чтобы техническая идея воплотилась в довольно совершенные конструкции. Другими словами, электрооборудование было сделано по последнему слову техники того времени, и, как и в наши дни, стояла проблема его дальнейшего совершенствования, на какой-то принципиально новой основе.

И теперь, и тем более в те времена электрические машины, трансформаторы, линии электропередач имели и имеют один существенный недостаток - они нагреваются, причем это ненужное для нас тепло возникает за счет электрической энергии вследствие неумолимого закона Джоуля - Ленца, гласящего, что любой ток, проходящий по проводнику с некоторым электрическим сопротивлением, отдает в этом сопротивлении часть своей энергии в виде тепла.

Иногда эта энергия используется, например, в электрических обогревателях, плитках, грелках. Однако в большинстве случаев тепловое нагревание электрических проводов является напрасной потерей электроэнергии, что было хорошо известно и Камерлинг-Оннесу.

Для магнитных измерений в Лейденской лаборатории требовалось построить несколько мощных электромагнитов с полем, например, 100 тысяч эрстед. Обычный электромагнит с массивным, как слон, стальным сердечником мог создавать поля лишь до 60 - 65 тысяч эрстед. К тому же, если такое чудовище весом в несколько тонн поместить в лаборатории, не останется места для работы. Значит, нужно было создавать соленоид, то есть попросту спираль, по которой идет ток, создающий сильное магнитное поле. Но "у каждого - свои недостатки". В соленоиде, выполненном, например, из меди, будет тратиться зря колоссальная мощность! Лишь с помощью сверхпроводников можно было бы избавиться от потерь и создавать сколь угодно мощные электромагниты для исследований. Эта идея увлекла профессора Оннеса, и уже в 1913 году в том же журнале "Сообщения из Лейденской лаборатории" он опубликовал статью с предложением построить сверхпроводящий магнит на 100 тысяч эрстед, не имеющий бесполезных потерь мощности и, естественно, изготовленный не из меди, а из какого-нибудь сверхпроводящего металла.

Однако последующие события показали, что Оннес, как говорится, "замечтался". Суровые физические законы, казалось, восстали против смелой идеи.

Вскоре после опубликования статьи Оннес выяснил, что по сверхпроводнику может течь ток отнюдь не всякой величины. Как только величина тока превосходит некоторое (позже названное "критическим") значение, ток "выключает" сверхпроводимость, и вместо образца с волшебными свойствами в руках у исследователя оказывается ничем не примечательный кусочек свинца, ртути или олова. Токи были настолько малы, что постройка магнита из такой проволоки была бы практически бесполезной. И это еще не все. Вскоре после открытия Оннеса было обнаружено, что не только ток способен "выключить" сверхпроводимость. Сверхпроводимость исчезала и под влиянием очень слабых магнитных полей, не превышающих сотен эрстед. А Камерлинг-Оннес мечтал о сотнях тысяч.

Стало ясно, что сверхпроводимость - не более чем физическая игрушка, возбуждающий любопытство физиков феномен. Видимо, будучи убежденным в этом, ушел на покой Гейке Камерлинг-Оннес, оставив лейденскую лабораторию своим последователям В. Кеезому и де Хаазу.

Кеезом известен своим капитальным трудом "Гелий". В книге собрано все, что знали о гелии - от истории его открытия до свойств в жидком состоянии.

Де Хааз провел многочисленные исследования низких температур, сверхпроводящих сплавов. Совместное советским физиком Л. В. Шубниковым (стажировавшимся в лейденской лаборатории) он открыл так называемый "эффект Шубникова - де Хааза".

В начале тридцатых годов было обнаружено, что существует несколько сплавов различных металлов, в которых сверхпроводимость исчезает в магнитном поле гораздо большем, чем то, о котором знал Оннес. В сплаве свинца с висмутом "критическое магнитное поле" превышало уже пятнадцать тысяч эрстед. Хотя до сотен тысяч эрстед, о которых мечтал Оннес, было еще далеко, физики воспрянули духом. Появилась как будто бы возможность создавать "бесплатные" электромагниты если не на сотни тысяч эрстед, то хотя бы на пятнадцать тысяч. Такие магниты уже можно было бы использовать в электрических машинах. Может быть, сплав свинца с висмутом удалось бы использовать даже в лабораторных магнитах, правда, не очень сильных, но больших по объему рабочей зоны.

Однако обстоятельства сложились совсем не так, как можно было ожидать. В дело вмешался новый директор лаборатории Кеезом. Он, измерив критический ток проволоки из сплава свинца с висмутом, выяснил, что ток слишком мал и сделать из такой проволоки сколько-нибудь ценный магнит невозможно.

Работники лаборатории, ознакомившись с выводами Кеезома, решили отказаться от "бесперспективных" сверхпроводников. Так, сверхпроводящие магниты были "закрыты" во второй раз.


Владимир Карцев читать все книги автора по порядку

Владимир Карцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Приключение великих уравнений отзывы

Отзывы читателей о книге Приключение великих уравнений, автор: Владимир Карцев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.