My-library.info
Все категории

Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок. Жанр: Образовательная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Ритм Вселенной. Как из хаоса возникает порядок
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
16 сентябрь 2019
Количество просмотров:
184
Читать онлайн
Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок

Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок краткое содержание

Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок - описание и краткое содержание, автор Стивен Строгац, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.На русском языке публикуется впервые.

Ритм Вселенной. Как из хаоса возникает порядок читать онлайн бесплатно

Ритм Вселенной. Как из хаоса возникает порядок - читать книгу онлайн бесплатно, автор Стивен Строгац

Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?

Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.

В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.

Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.

Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.



Чтобы получить более наглядную картину происходящего, представьте отдельно взятую клетку в виде бачка унитаза, наполняющегося водой. Когда вода поступает в бачок, ее уровень постепенно повышается, подобно напряжению в клетке. Допустим, что когда вода в бачке достигнет определенного уровня, произойдет автоматический слив воды из бачка. Быстрый слив воды вернет ее уровень к исходному (условно нулевому), после чего бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.

В связи с этим возникает следующий вопрос: как поведет себя такое хитросплетение бачков? Будут ли эти бачки наполняться и сливаться хаотически, когда каждому из них заблагорассудится? Распадется ли их сообщество на отдельные группировки, конкурирующие между собой? Может быть, они будут наполняться и сливаться по очереди, друг за другом?

Пескин предположил, что такая система всегда будет входить в синхронизм: какой бы ни была начальная ситуация в такой системе, в конечном счете все осцилляторы будут запускаться в унисон. Кроме того, он предположил, что синхронизм наступит, даже если эти осцилляторы будут не вполне идентичны. Но когда Пескин попытался доказать свои предположения, он столкнулся с определенными техническими препятствиями. В частности, отсутствовали надежные математические процедуры, которые позволяли бы описывать большие системы осцилляторов, обменивающихся между собой внезапными, дискретными импульсами. Поэтому он отказался от своего первоначального замысла и сосредоточился на простейшем возможном случае: двух идентичных осцилляторах. Однако даже в этом случае математические проблемы казались чересчур сложными. Пескин попытался еще больше упростить задачу, допустив возможность лишь бесконечно малых толчков и бесконечно малых утечек через резистор. После таких упрощений задача поддавалась решению: для этого специального случая Пескин доказал неизбежность синхронизма.

Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время находится в исходном положении (нулевом напряжении). Напряжение осциллятора B, напротив, меняется от одного снимка к следующему. Решая уравнения, описывающие такую модель, Пескин нашел исчерпывающую, но весьма «навороченную» формулу, описывающую изменения напряжения осциллятора B в промежутках между фотоснимками. Эта формула показала, что в случае, когда это напряжение оказывается меньше определенного критического значения, оно будет неуклонно снижаться, пока не достигнет нуля, тогда как в случае, когда это напряжение оказывается больше критического значения, оно будет неуклонно повышаться, пока не достигнет порогового значения. В любом случае осциллятор B в конечном счете синхронизируется с A. Есть лишь одно исключение: если напряжение осциллятора B в точности равно критическому значению напряжения, его невозможно изменить ни в сторону увеличения, ни в сторону уменьшения, поэтому оно остается в равновесном критическом значении. Осцилляторы A и B запускаются повторно, однако этот запуск происходит несинфазно, а с разницей во времени, составляющей половину цикла. Но это равновесие оказывается неустойчивым: малейший толчок смещает систему в направлении синхронизма.


Стивен Строгац читать все книги автора по порядку

Стивен Строгац - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Ритм Вселенной. Как из хаоса возникает порядок отзывы

Отзывы читателей о книге Ритм Вселенной. Как из хаоса возникает порядок, автор: Стивен Строгац. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.