My-library.info
Все категории

Айзек Азимов - Краткая история биологии. От алхимии до генетики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Айзек Азимов - Краткая история биологии. От алхимии до генетики. Жанр: Биология издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Краткая история биологии. От алхимии до генетики
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
240
Читать онлайн
Айзек Азимов - Краткая история биологии. От алхимии до генетики

Айзек Азимов - Краткая история биологии. От алхимии до генетики краткое содержание

Айзек Азимов - Краткая история биологии. От алхимии до генетики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Знаменитый писатель фантаст, ученый с мировым именем, великий популяризатор науки, автор около 500 фантастических, исторических и научно-популярных изданий приглашает вас в увлекательное путешествие по просторам науки о живой природе.В книге повествуется о сложном пути развития биологии с глубокой древности до наших дней. Вы узнаете о врачах и фиолософах античности, о монахах и алхимиках Средневековья, о физиках, геологах и палеонтологах века Просвещения, о современных ученых, внесших огромный вклад в науку, которая стала родоначальницей многих новейших научных направлений. В книге также много интересных и остроумных историй об иллюзиях и суевериях, открытиях и феноменах, гипотезах и перспективах сложной науки биологии.Книга А.Азимова – это оригинальное сочетание научной достоверности, яркой образности, мастерского изложения

Краткая история биологии. От алхимии до генетики читать онлайн бесплатно

Краткая история биологии. От алхимии до генетики - читать книгу онлайн бесплатно, автор Айзек Азимов

В 1890-х годах Кессель сделал несколько немаловажных выводов. Клетки спермы почти полностью состоят из плотно упакованных хромосом и несут химическую субстанцию, включающую полный набор «инструкций», по которым родительские характеристики передаются следующему поколению. Однако он обнаружил, что клетки спермы содержат очень простые протеины, гораздо более простые, чем те, что находятся в тканях, в то время как содержимое нулеиновых кислот кажется аналогичным содержимому тканей. Ввиду этого более вероятно, что инструкции по наследованию заключены в неизмененных молекулах нуклеиновых кислот спермы, нежели в упрощенных протеинах, содержащихся в ней. Нуклеиновые молекулы гораздо мельче (состоят всего из четырех нуклеотидов), поэтому им гораздо проще нести генетические инструкции.

Поворотный момент наступил в 1944 г., когда группа ученых под руководством американского бактериолога Освальда Теодора Звери (1877 — 1955) вела исследования со штаммами пневмококков (бактерий, вызывающих пневмонию). Некоторые из штаммов были «гладкими» (вокруг клетки у них наличествовала капсула) — с индексом S, некоторые — «шероховатыми» (без капсулы), им присваивался индекс R.

Далее эксперимент пошел по следующему пути: к штамму без капсул прибавляли экстракт штамма S. Бескаисульные бактерии (R), которые, предположительно, не могли сами ранее вырабатывать капсулу, начинали самостоятельно выполнять эту задачу. Самый ошеломляющий вывод последовал при анализе ориентирующей на изменение физических свойств вытяжки (S): она содержала только нуклеиновые кислоты. Протеин не присутствовал в ней вообще.

В данном случае именно нуклеиновая кислота, а не протеин была генетической субстанцией. С этого момента признано, что нуклеиновая кислота является первоочередным и ключевым веществом жизни.

Начиная с 1944 г., полностью подтвержден новый взгляд на природу нуклеиновых кислот, и ярчайшим подтверждением явилось исследование природы вирусов. Было выявлено, что наружной оболочкой вируса является протеин, а внутренним содержимым — молекула нуклеиновой кислоты. Биохимику Хайнцу Франкел-Конрату удалось расчленить эти две составляющие. При этом оказалось, что протеиновая составляющая абсолютно неинфекционна — она мертва. Нуклеиновая составляющая проявила небольшую инфекционность, однако ей не хватало для проявления своих свойств протеиновой составляющей.

Работа с радиоизотопами показала, что когда бактериофаг внедряется в бактериальную клетку, то проникает сквозь клеточную оболочку лишь нуклеиновая составляющая. Протеиновая составляющая остается снаружи. Внутри клетки нуклеиновая кислота не только привносит выработку все большего количества нуклеиновых молекул, но и протеиновых молекул для формирования оболочки, причем своего характерного протеина, а не протеина бактериальной клетки. В дальнейшем не было сомнений, что именно молекула нуклеиновой кислоты, а не протеина несет генетическую информацию.

Молекулы вирусов содержат либо только ДНК, либо только РНК, либо и то и другое. Внутри клетки ДНК находится только в генах. Поскольку гены — это блоки, несущие наследственность, значение нуклеиновых кислот сводится к значению ДНК.


Структура нуклеиновых кислот

После работы Звери нуклеиновые кислоты начали пристально изучать. Обнаружилось, что они представляют собой огромные молекулы. После того как выяснилось, что предыдущие методы экстракции были слишком грубыми для расщепления молекул на фрагменты, были разработаны более тонкие методики. Они показали, что молекулы нуклеиновых кислот так же велики или даже больше, чем протеиновые молекулы.

Биохимик Эрвин Шаргафф расчленил молекулы нуклеиновых кислот и подверг фрагменты сепарации методом хроматографии. Он доказал, что в молекуле ДНК число пу-риновых групп равно числу пиримидиновых групп. Число же адениновых групп (пурин) обычно равно числу тиминовых групп (пиримидин), в то время как число гуаниновых групп (пурин) равно числу цитозиновых (пиримидин). Графически можно это выразить как А=Т и Г=Ц.

Британский физиолог Морис Хью Фредерик Уилкинс применил методику рентгеновской дифракции к структуре ДНК еще в 1950-х годах, и его коллеги биохимики Фрэнсис Комптон Крик и Джеймс Деви Уот-сон разработали молекулярную структуру, полученную экспериментально Уилкинсом.

Полинг как раз разработал теорию спиральной структуры протеинов, и Крик с Уотсоном взяли ее на вооружение в отношении данных, полученных Уйлкинсом. Однако в данном случае спираль должна была получиться двойная. Ученые предположили, что «остов» спирали составляют двойные сахаро-фосфатные цепочки, закручивающиеся вокруг общей оси и формирующие цилиндрическую молекулу. Пурины и ииримидины направлены внутрь, приближаясь к центру цилиндра. Чтобы сохранить диаметр цилиндра однородным, пурин (крупная составляющая) должен прилегать к пиримидину (малая составляющая). Специфически: А прилегает к Т, а Г прилегает к Ц. Именно таким образом объясняются наблюдения и выводы Шаргаффа.

Более того, в качестве ключевого шага в митозе можно теперь было взять удвоение хромосом (в качестве следствия этого факта — воспроизведение молекул вируса внутри клетки).

Каждая молекула ДНК производит свой собственный репликах: две сахаро-фосфат-ные нити раскручиваются и каждая служит моделью для нового «комплекта». Где бы ни находился аденин на данной нити, молекула тимина избирается из запаса, всегда наличествующего в клетке, и наоборот. Где бы ни находилась молекула гуанина, молекула цитозина избирается в пару ей, и наоборот. Вскоре после этих перестроений там, где была недавно двойная спираль, находятся уже две подобные ей двойные спирали.





Две правозакрученныс вокруг общей оси спиральные полинуклеотидные цепи.

А — аденин; Г — гуанин; Т — тимин; Ц — цитозин;

Ф — фосфатная группа; С — моносахарид


Если молекулы ДНК производили это вдоль линии хромосомы (или вируса), то образуются две идентичные хромосомы (или два вируса). Процесс не всегда, однако, идет гладко. Новая молекула ДНК слегка отличается от своего «предка», являясь мутацией, если в ходе удвоения произошли какие-то изменения. Эту модель представили научному миру Уотсон и Крик в 1953 г.

Генетический код

Но как молекула нуклеиновой кислоты передает информацию о физических характеристиках? Ответ на этот вопрос был получен из работ американских генетиков Джорджа Уэлса Бидла и Эдварда Лари Тейтума. В 1941 г. они начали эксперименты со штаммом плесневого грибка Neurospora crassa, живущего на питательной среде, лишенной аминокислот. Плесень сама вырабатывала свои аминокислоты из простых азотных составляющих.

При обработке грибка рентгеновскими лучами происходили мутации, и некоторые из этих мутантов не могли вырабатывать собственные аминокислоты. Однако эти же аминокислоты нужны были грибку для роста. Ученые задались целью доказать, что неспособность к производству аминокислот объяснялась недостатком специфического энзима, которым обладал немутирующий штамм.

Они сделали заключение, что присутствие данного энзима — характерная функция определенного гена, который контролирует данный энзим. Содержащиеся в сперме и яйцеклетках нуклеиновые кислоты имеют определенный набор энзимов. Природа этих энзимов определяет биохимию клетки; наследственные характеристики определяются, в свою очередь, этой биохимией.

Производство энзимов генами должно выполняться посредниками, поскольку ДНК гена остается внутри ядра, а синтез протеинов происходит вне ядра. С применением электронного микроскопа клетка начала изучаться в новом и более тонком аспекте; было также найдено точное место производства протеинов.

Внутри клеток были отмечены структурированные гранулы, по размерам гораздо мельче митохондрий, которые были названы микросомами. К 1956 г. ученый Джордж Эмиль Палад доказал наличие РНК в составе микросом. Поэтому микросомы были переименованы в рибосомы, и именно в них, как оказалось, и происходил синтез протеинов.

Генетическая информация от хромосом должна достигать рибосом, и это осуществляется «посылкой» РНК. Структура определенной ДНК-молекулы «путешествует» с этими посланниками к рибосоме. Малые молекулы трансфер-РНК, впервые изученные американским биохимиком Малоном Хугландом, прикреплялись к специфическим аминокислотам, затем, неся аминокислоты, прикреплялись к определенным точкам на «РНК-посланниках».

Главная и еще неразрешенная проблема состояла в том, чтобы изучить, каким образом определенная молекула трансфер-РНК прикрепляется к определенной аминокислоте. Простейшим решением было, видимо, представить себе аминокислоту, прикрепляющуюся к пурину или пиримидину нуклеиновой кислоты; причем разные аминокислоты крепились то к пурину, то к пиримидину. В молекуле нуклеиновой кислоты около двадцати разных аминокислот и только четыре пурина и пиримидина. Поэтому становится понятным, что комбинация из но крайней мере трех нуклеотидов должна крепиться к каждой аминокислоте. Существует 64 различных возможных комбинации из трех нуклеотидов.


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Краткая история биологии. От алхимии до генетики отзывы

Отзывы читателей о книге Краткая история биологии. От алхимии до генетики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.