Главное, что нужно для работы информационной технологии — это некоторый носитель данных с большим количеством ячеек памяти. Каждая ячейка должна быть способна пребывать в одном из нескольких дискретных состояний. Этому требованию, так или иначе, удовлетворяет цифровая информационная технология, доминирующая в современном техническом мире. Существует информационная технология альтернативного рода, основанная на аналоговой информации. Информация на обычной граммофонной пластинке аналоговая, и хранится она в виде изгибов длинной канавки. Информация на современном лазерном диске (часто называемом, к сожалению, «компакт-диском» — это название неинформативно и, к тому же, обычно неправильно произносится с ударением на первом слове) — цифровая, она сохраняется в виде ряда крошечных углублений, каждые из которых или существует, или нет, и никаких полусуществований не предусмотрено. Это симптоматическая особенность цифровой системы: её базовые элементы находятся либо в одном однозначном состоянии, либо в другом — столь же однозначном, без половинчатых и промежуточных значений, без компромиссов.
Генетическая информационная технология является цифровой. Этот обнаружил Грегор Мендель в 19-м столетии, хотя он и не говорил таких слов. Мендель показал, что родительские наследственные признаки не смешиваются в нас подобно краскам разного цвета. Мы получаем наши наследственные признаки в виде дискретных частиц. Если такая частица в нас есть, то мы наследуем соответствующий признак; если нет — то не наследуем. Как остроумно отметил Р. A. Фишер, один из отцов-основателей того, что теперь называется нео-дарвинизмом: «Проявление несмешивающегося наследования всегда у нас перед глазами, когда мы смотрим на существ разного пола. Мы наследуем что-то от мужчины, что-то от женщины, но сами при этом являемся либо мужчиной, либо женщиной, а не гермафродитом». У каждого младенца есть примерно равные шансы унаследовать мужской или женский пол, но он унаследует только один из них, а не их смесь. Мы теперь знаем, что то же самое справедливо для всех наших единиц наследования. Они не смешиваются, оставаясь дискретными и раздельными, как бы они ни тасовались и перетасовывались в своём путешествии по поколениям. Конечно, внешние результаты наследования этих дискретных частиц часто очень сильно похожи на эффекты смешивания. Если высокий человек совокупляется с низким или чёрный — с белым, то их потомство часто бывает чем-то средним. Но смешивание относится только к телесным эффектам и возникает из-за суммирования маленьких эффектов большого количества частиц. Сами частицы, переходя в следующее поколение, остаются теми же самыми дискретными единицами.
Различие между смешивающейся и несмешивающейся наследственностью было очень важным в истории эволюционных идей. Во времена Дарвина, все, кроме укрывшегося в монастыре Менделя, который, к сожалению, игнорировался до самой смерти, полагали наследование смешивающимся. Шотландский инженер Флеминг Дженкин заметил, что факт (как он полагал) смешивающейся наследственности почти исключает естественный отбор как правдоподобную эволюционную теорию. Эрнст Майр весьма недоброжелательно отмечает, что статья Дженкина «исходит изо всех обычных предубеждений и недоразумений учёных-физиков. Однако Дарвин был глубоко обеспокоен аргументацией Дженкина. Наиболее красочно эта аргументация отражена в притче про белого человека, потерпевшего кораблекрушение на острове, населённом «неграми»:
Давайте предоставим ему все, какие только можно, преимущества над аборигенами; допустим, что в борьбе за существование его шансы на долгую жизнь будут намного выше таковых у местных вождей, тем не менее, из этих условий ещё не следует, что после смены ограниченного или неограниченного количества поколений, жители острова будут белыми. Наш герой, вероятно, стал бы королём; он убил бы очень многих чернокожих в борьбе за существование; он имел бы очень много жён и детей, а многие из его подданных прожили бы бездетную жизнь холостяка … наш белый, конечно, очень хорошо сохранился бы в старости, и всё же — этого не будет достаточно, чтобы за сколько-то поколений его потомки превратились бы в белых … В первом поколении появятся несколько дюжин интеллектуальных молодых мулатов, намного превосходящих негров своим средним интеллектом. Мы могли бы предполагать, что несколько поколений их трон будет занимать более или менее жёлтый король; но можно ли полагать, что весь остров постепенно станет заселять белая, или даже жёлтая, популяция, или что островитяне приобретут энергию, храбрость, изобретательность, терпение, самообладание, выносливость, благодаря которым наш герой убил так много их предков и породил так много своих детей — то есть, те качества которые отбирает борьба за существование, если она, конечно, может что-то отбирать?
Не смущайтесь расистскими предпосылками о превосходстве белой расы. Во времена Дженкина и Дарвина они полагались столь же бесспорными, сколь же сегодня полагаются бесспорными предпосылки о правах человека, человеческом достоинстве и святости человеческой жизни. Мы можем пересказать аргумент Дженкина, используя более нейтральную аналогию. Если вы смешаете белую и чёрную краску, что вы получите серую краску. Если вы далее будете смешивать одну серую и другую серую краску, то вы не сможете реконструировать ни белый, ни чёрный оригиналы. Смешивание красок — не слишком далёкая от до-менделевского видения наследственности аналогия, и даже сегодня на бытовом уровне наследственность часто описывается в выражениях «смешения кровей». Дженкин аргументировал свою позицию феноменом заливки. При смешивающейся наследственности, по мере смены поколений вариации должны слиться, и в популяции будет всё больше и больше доминировать однородность. В конечном счете, вариаций не будет, и естественному отбору будет не над чем работать.
Судя по тому, как этот аргумент был сформулирован, он не был аргументом против естественного отбора. Это был больше аргумент против неотвратимых свойств самой наследственности! Исчезновение вариаций по мере смены поколений на практике не подтверждается. Люди сегодня подобны друг другу не более, во времена своих бабушек и дедушек. Вариации поддерживаются. Существует пул вариаций, пригодных для продолжения работы отбора. Это было доказано математически в 1908-м году В. Вейнбергом и, независимо, эксцентричным математиком Г. Х. Харди; кстати, как свидетельствует книга регистрации пари его (и моего) колледжа, он однажды выиграл пари «Полпенни в его пользу до самой смерти, что солнце взойдёт завтра». Но потребовался Р. A. Фишер с коллегами — основателями современной популяционной генетики, чтобы дать полный ответ Флемингу Дженкину в терминах теории несмешивающейся генетики Менделя. Ирония состояла в том, что, как мы увидим в главе 11, ведущие последователи Менделя в начале двадцатого века полагали себя антидарвинистами. Фишер и его коллеги показали, что дарвиновский отбор имеет смысл, а проблема Дженкина изящно разрешается, если эволюцию представить как изменение относительных частот дискретных наследственных частиц (генов), каждый из которых или присутствовал бы, или отсутствовал в любой конкретной особи. Пост-фишеровский дарвинизм называется нео-дарвинизм. Его цифровая природа — не побочный эффект, которым случайно обладает генетическая информационная технология. Дискрентность — это, видимо, совершенно необходимое условие, чтобы дарвинизм был работоспособен.
В нашей электронной технологии дискретные ячейки памяти могут находиться только в двух состояниях, традиционно представляемых как 0 и 1, хотя их можно трактовать как «высоко-низко», «включено-выключено», «верх и низ»; главное — что они должны быть чётко отличны друг от друга, и совокупность этих состояний может быть «прочитана» так, чтобы на что-то влиять. В электронной технологии используются самые различные физические среды для хранения нулей и единиц — тут и магнитные носители (ленты и диски), и перфорированные карты и ленты, и электронные «чипы» с большим количеством маленьких полупроводниковых ключей внутри.
Главный носитель данных внутри ивовых семян, муравьёв и всех других живых клеток — не электронный, а химический. В нём используется тот факт, что некоторые молекулы способны к «полимеризации», которая заключается в соединении молекул в длинные цепи неограниченной длины. Существует много разных полимеров. Например, «полиэтилен» представляет собой длинные цепи маленькой молекулы, называемой этиленом; т. е. это полимеризированный этилен. Крахмал и целлюлоза — полимеризированный сахар. Некоторые полимерные цепочки являются цепями, состоящими не из однотипных маленьких молекул (как этилен), а молекул двух или более различных видов. Как только такая гетерогенность появляется в полимерной цепи, так информационная технология на ней становится теоретически возможной. Если в нашей цепи имеются два вида маленьких молекул, одну из которых можно полагать нулём, а другую — единицей, так сразу же на ней оказывается возможно хранить любое количество информации любого вида, лишь бы цепь была достаточно длинна. Специфические полимеры, используемые живыми клетками называются полинуклеотидами. В живых клетках существует два главных семейства полинуклеотидов, кратко — ДНК и РНК. Оба представляют собой цепи маленьких молекул, называемых нуклеотидами. И ДНК и РНК — гетерогенные цепи с четырьмя различными видами нуклеотидов. И конечно, именно это открывает возможность для хранения информации. Вместо только двух состояний, «1» и «0», информационная технология живых клеток использует четыре состояния, которые традиционно представляются как A, T, C и G. В принципе, разница между бинарной информационной технологией двух состояний (ткаой, как компьютерная) и технологией четырёх состояний (таковая для живой клетки), очень невелика.