Второй вариант решения все той же проблемы ускорения азотфиксирующей способности бактерий предложили биотехнологи, использовав при этом им одним присущее сочетание чисто биологических подходов к эксперименту с технической виртуозностью его проведения. Другими словами, биотехнология в данном случае воспользовалась тончайшими методами генетической инженерии.
Работа осуществлялась в Институте биохимии и физиологии микроорганизмов АН СССР под руководством академика А. А. Баева. Ученые шли к той же цели, что и А. М. Кузин (ускорение бактериями азотфиксирующей деятельности), но своим, оригинальным путем. Познание молекулярно-генетических основ симбиотических взаимосвязей — вот что стало их программой-максимумом. Вспомните-ка энциклопедическое определение понятия «почва», на сей раз его первую часть: «природное образование, состоящее из генетически связанных горизонтов...» Но зачем ученым понадобилось столь углубленное проникновение в симбиотические взаимосвязи?
Для того чтоб, разобравшись в них, получить возможность управлять процессом азотфиксации. А достигнуть задуманное оказалось возможно лишь путем направленного конструирования бактериальных суперштаммов, наиболее перспективных для использования в земледелии.
По сути дела речь шла о том, чтобы усовершенствовать с помощью генетической инженерии и передать в таком улучшенном виде последующим поколениям новый штамм бактерии-азотфиксатора, оптимально проявляющего себя в условиях биогеоценоза. Конструирование нового организма шло по отработанной, хорошо известной современной биотехнологии методике: часть генетического аппарата (весь он называется геномом) одного микроба переносилась в другой. Жизнедеятельность обоих при этом не страдала, а рабочие качества возрастали. Подвергшийся трансплантации организм по сути дела становился новым организмом с иными возможностями и качествами. Он теперь воссоединял в себе все достоинства двух перенесших генетическую операцию организмов. Конечно, генетическое конструирование нового штамма азотфиксирующих бактерий и само по себе — дело нелегкое, но главная трудность, с какой сталкиваются обычно исследователи при его реализации, — технология извлечения из генома какого-то одного, но вполне конкретного оперона(часть генетического материала, ответственная за реализацию того или иного признака).
Но характер проявления азотфиксирующих свойств зависит не только от биологических особенностей самой бактерии, но и от соседей по симбиозу, продуктов их жизнедеятельности, способных подавлять или, наоборот, усиливать уникальные качества азотфиксаторов.
Надо сказать, что симбиотические привязанности бактерий весьма консервативны. Как убедительно доказано наукой, клубеньковые микроорганизмы, например, очень неохотно меняют растение-хозяина, места обитания и собственные «вкусы». Одни из них предпочитают клевер, другие — люпины, а третьи — горох. И только в этих привычных условиях их азотфиксирующие особенности срабатывают наиболее эффективно. Отсюда вывод, сделанный биотехнологами: конструируя новый организм, необходимо учитывать взаимозависимость всех сожителей симбиоза.
Проверяется терпимость нового, созданного с учетом вышеназванных особенностей, штамма к тому или иному соседу по симбиозу довольно просто — путем взаимного слияния бактериальных клеток, симбиотирующих с определенной парой растений. Ну, например, клевером и фасолью, горохом и люпином. Если новый штамм «охотно» внедряется в корневые волокна растений, значит, он будет активно продуцировать в их среде не только в лабораторных условиях.
Еще более жесткой проверке подвергалась способность микроорганизма к азотфиксации. Осуществлялась она сразу несколькими путями. Скажем, бактерии определенное время выдерживались при значительно более высокой, чем в привычных, «родных» для них условиях, температуре. Некоторые из них после этого теряли способность внедряться в корневые волоски растения-хозяина. Столь губительной оказывалась для оперона, контролирующего «влечение» конкретного микроорганизма к конкретному растению, чрезмерно повысившаяся температура среды обитания. Пробовали и другое — наделить свойствами азотфиксации бактерии, не обладавшие прежде столь уникальным даром. И что же? Волшебное действие перенесенного из другого организма оперона, кодирующего Данное качество, срабатывало. Правда, не всегда, всего лишь в одной попытке из пяти, но срабатывало. А это уже успех, и немалый. По крайней мере такой, за которым опять же видится практическая отдача — скажем, перспектива создания микробной клетки высочайшей конкурентоспособности или устойчивости к негативным воздействиям биогеоценозов почвенных горизонтов.
Характер всех вышеназванных здесь работ, а вернее, их направленность была предопределена еще более десяти лет назад Брукхейвенским (США) симпозиумом «Генетическая инженерия для фиксации азота». Его участники, основываясь на реальном положении дел и тенденциях развития современной микробиологии и микробиологической индустрии, пришли к выводу, что резкого повышения продуктивности биологического азота можно достичь только объединенными усилиями всех научных направлений, причастных к решению данной проблемы. Причем собравшимися особенно подчеркивалось значение и роль в этом творческом союзе таких современных методов исследования, как генетическая инженерия и биотехнология.
С тех пор прошло достаточно много времени, чтобы оценить верность избранного почвоведами, химиками, микробиологами и генетиками пути. И хотя оценка той памятной конференции и с сегодняшних позиций может рассматриваться положительной, время внесло коррективы в тогда лишь просматривавшиеся тенденции.
Какие же направления в решении проблемы фиксации биологического азота наметились сегодня? Их несколько. Но основных, на мой взгляд, два.
Первое предполагает создание микробных штаммов, способных симбиотировать не с одним растением, а с несколькими. Разве не заманчиво, к примеру, создать бактерии, образующие на корнях той же пшеницы клубеньки? Конечно, и заманчиво и перспективно. Ведь в таком случае перед учеными и практиками открылись бы сразу две уникальных возможности: значительно повысить урожайность злаковых и не менее значительно сократить подкормку их посевов минеральными удобрениями, сэкономив последние для других нужд или просто снизив их производство.
Второе направление развития работ в области фиксации азота остается традиционным: конструирование штаммов, обладающих в высшей степени выдающимися способностями утилизации молекулярного азота.
Разумеется, каждое такое направление подразделяется на великое множество ответвлений, нередко пересекающихся друг с другом в своем развитии. Наиболее значимыми среди этих пока что «боковых» ответвлений на символическом древе современной микробиологии представляются мне молодые его побеги, развитие которых стимулировала все та же генетическая инженерия. Смысл задуманной ею операции по совершенствованию азотфиксирующей деятельности микроба сводится к тому, чтобы изъять из его генетического аппарата балластные, с точки зрения практических интересов человечества, опероны.
Такая «модернизация» микроорганизмов позволила бы всю их жизнедеятельность подчинить единственной задаче — фиксации атмосферного азота, не растрачивая уникальную клеточную энергию на то, что, опять же с нашей точки зрения, представляется балластом.
И еще пример весьма заманчивого использования «ответвления» главного направления. Взять ту же проблему внутриклеточной энергии, от которой в конечном счете зависит, насколько результативна бактериальная деятельность по ассимиляции атмосферного азота. Производит энергию, как мы теперь знаем, нитрогеназа. Но даже такая экономная хозяйка, как она, не всегда рационально использует свои возможности: сорок процентов всей вырабатываемой ею энергии расходуется на выделение атомарного водорода. Но он ни для жизнедеятельности самой клетки, ни находящемуся с ней в симбиотическом союзе растению не нужен. Вот и получается, что дефицитная энергия сжигается напрасно. Между тем существуют клубеньковые бактерии, обладающие еще одним ферментом, так называемой гидрогеназой, способной утилизировать выделенный клеткой водород, практически целиком его используя для всевозможных внутриклеточных нужд.
Колосья растущие на букве
Вот бы наделить столь полезными свойствами все бактерии! Тогда бы им и ассимиляция «безжизненного» элемента обошлась бы намного дешевле, поскольку гидгогеназа благодаря своему ферментативному совершенству значительно сокращает энергетические расходы на процесс азотфиксации. Но возможно ль такое? Сегодня и на этот вопрос наука в состоянии ответить утвердительно. И хотя такого рода работы в промышленном масштабе пока что перспективны лишь для клубеньковых, то есть для симбиотических бактерий, возможности применения генетической инженерии столь широки, что нет никаких сомнений в том, что со временем промышленное производство высокопродуктивных штаммов свободноживущих бактерий тоже окажется экономически выгодным. Думается, что к решению этой проблемы ученые подойдут уже в ближайшей перспективе. По крайней мере, практические нужды земледелия диктуют им свои сроки.