My-library.info
Все категории

Владимир Рюмин - Занимательная химия

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Владимир Рюмин - Занимательная химия. Жанр: Химия издательство неизвестно, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Занимательная химия
Издательство:
неизвестно
ISBN:
нет данных
Год:
-
Дата добавления:
16 ноябрь 2019
Количество просмотров:
407
Читать онлайн
Владимир Рюмин - Занимательная химия

Владимир Рюмин - Занимательная химия краткое содержание

Владимир Рюмин - Занимательная химия - описание и краткое содержание, автор Владимир Рюмин, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Хотя книга не преследует учебных целей, все же я думаю, что незнакомый с химией вынесет из нее начальные понятия об этой науке; знакомый же найдет в ней указания на то, как использовать свои познания для постановки опытов в более эффектном виде. Настоящая книжка имеет в виду читателей, умеющих соблюдать осторожность в обращении с некоторыми не вполне безопасными веществами. Как следует обращаться с ними, чтобы не повредить себе и другим, указано в особом дополнении в конце настоящей книги; читатель, даже совершенно незнакомый с химическими манипуляциями, найдет там необходимые указания к их выполнению.

Занимательная химия читать онлайн бесплатно

Занимательная химия - читать книгу онлайн бесплатно, автор Владимир Рюмин

Филологический курьез. В технике применяется еще один газ с содержанием до 25% голубого газа, то-есть окиси углерода, и называется он блаугаз. По-немецки слово blau значит синий. Но правильное его название: газ инженера Блау, по фамилии лица, предложившего его применение, а не "синий газ". Таким газом, между прочим, питаются моторы дирижабля "Цеппелин-127".

Что касается водяного газа, то физик и химик назовут водяным газом, т. е. водой в газообразном состоянии, водяной пар, перегретый до такой температуры (свыше 1000°), при которой его никаким давлением нельзя сгустить в жидкость.

В технике же называют "водяным газом" горячую смесь окиси углерода с водородом, получающуюся при разложении раскаленным углем воды, пульверизируемой на его поверхность в виде пыли или пускаемой в виде струи пара. Уголь при этом соединяется с кислородом воды в окись углерода, а водород освобождается. В избытке воздуха такая смесь газов сгорает, при чем окись углерода обращается в неспособный к дальнейшему горению угольный ангидрид, а водород - обратно в воду.

Сказанное попутно объясняет нам, почему в кузницах, чтобы усилить жар, брызжут в уголь воду, и отчего гашение большого пожара тонкими струйками воды из ручных пожарных насосов не только не гасит, но и усиливает пламя.

Газы дыхания и горения

Один английский химик сказал, что поэт, впервые уподобивший жизнь горению свечи, был ближе к истине, чем сам это думал.

Зажжем свечу. Коснемся ее пламени холодным утюгом. На нем, как и при прикосновении к пламени водорода, мы заметим капли воды, но, кроме того, еще и сажу.

Поставим огарок свечи в высокий стеклянный цилиндр (хотя бы в банку из-под варенья). Погорев некоторое время, свеча погаснет. Вольем в сосуд известковой воды, - вода помутнеет.

Подышим на холодное стекло, - оно "запотеет", покроется мелкими каплями воды. Будем дышать через налитую в стакан прозрачную известковую воду, опустив в нее один конец стеклянной трубки, а другой держа во рту (рис. 23). Вдыхайте при этом воздух носом и, задержав его в легких секунд на пять, выдыхайте ртом через трубочку: вода опять-таки помутнеет.

Рис. 23. Мы выдыхаем угольный газ

Помутнение в обоих случаях зависит от одной и той же причины: от наличия соединения углерода с кислородом. Это угольный газ, или более научно - угольный ангидрид. С водой он дает слабую угольную кислоту, но зачастую даже в учебниках химии и самый газ называют углекислым газом, а то и прямо углекислотой.

Следовательно, как при горении, так и при дыхании выделяются одни и те же продукты: вода и угольный ангидрид.

Если бы мы в первом опыте, с которого начались наши беседы, вместо магния взяли ядовитый фосфор[15], то опыт показал бы нам, что только пятая часть воздуха, - кислород, в нем растворенный,- поддерживает горение. Если бы мы имели жестокость поместить под стеклянный колокол, погруженный краями в воду, какую-нибудь живую тварь, она бы задохнулась раньше, чем вода поднялась бы в колоколе. Почему же?

Химический парадокс: являясь сильным ядом в чистом виде, фосфор в его соединениях - необходимая составная часть нашей пищи. Выделив из человеческого организма весь находящийся в нем фосфор в виде желтого фосфора, можно отравить им смертельно 250.000 человек.

Потому что фосфор, жадно соединяющийся с кислородом, перестанет гореть только тогда, когда сожжет весь кислород (то-есть израсходует его на сожжение), а живое существо умрет уже при недостатке последнего.

Должен оговориться: не всякое живое существо. Есть бактерии, дышащие серой; есть живые существа, для которых кислород - яд.

Кислород был впервые получен в чистом виде знаменитым английским ученым Пристлеем в 1774 году.

Имя Пристлея надо присоединить к списку тех многих ученых, которых преследовали попы и контрреволюционеры. Он не скрывал ни своих свободных взглядов на догматы церковников, ни революционных симпатий. И вот, когда он с друзьями праздновал годовщину взятия Бастилии, натравленные попами черносотенцы напали на его дом, разгромили лабораторию, сожгли его рукописи. Спасая свою жизнь, Пристлей бежал, а впоследствии эмигрировал в Америку.

Такое преследование научной мысли происходит и в наше "просвещенное время". На наших глазах в фашистской Германии идет озверелое гонение на ученых, и сжигаются, как в средние века, на площадях труды гениальных мыслителей.

Сотни ученых вынуждены были бежать из Германии, в том числе и Габер, открывший способ использования азота воздуха для синтеза аммиака и оказавший этим колоссальные услуги Германии во время мировой войны.

Реакции экзо- и эндотермические

При взрыве водорода с кислородом образуется вода и освобождается энергия. Чтобы разложить воду на водород и кислород, надо, наоборот, затратить энергию. Реакции, сопровождающиеся выделением энергии, называются экзотермическими, реакции, требующие притока энергии извне, называются эндотермическими.

Если вещества соединяются с выделением энергии, то на разложение на них полученного соединения надо затратить такое же количество энергии, какое выделилось, когда они соединялись. И, обратно, если вещества соединяются, поглощая энергию, то при разложении они столько же ее выделяют.

Отсюда важный практический вывод: многие реакции в общежитии и технике проделываются не для получения новых видов веществ, а для использования энергии, выделяющейся при реакциях.

Печи топят, сжигая горючее, не для того, чтобы превратить входящий в его состав углерод в угольный ангидрид, а водород в пары воды, а для того, чтобы использовать тепло, возникающее вследствие этих реакций.

В гальванических элементах цинк растворяют в кислоте не для получения цинковой соли, а для использования возникающего при этой реакции электрического тока. Химические процессы в технике используют, значит, не только для производства тех или иных веществ, но и для получения света (зажигание спички, горение свечи и керосиновой лампы), тепла (сожжение топлива в печах), механической энергии (взрывы смеси газов в двигателях внутреннего горения), электричества (в гальванических элементах и аккумуляторах) и т.д.

Газ, в котором горит железо

Если бы воздух не содержал азота, а целиком состоял из кислорода, жизнь организмов развилась бы, конечно, приспособившись к дыханию чистым кислородом. Одним был бы опасен такой состав атмосферы: горючестью в ней большинства окружающих нас предметов.

Страшны и сейчас пожары в деревнях и городах с преобладанием деревянных строений, но во много раз больше была бы опасность, если бы воздух не состоял на 4/5 из азота, не поддерживающего горения. В нем тогда горели бы не только уголь и дерево, но и большинство металлов. Сгорели бы легко не одни деревянные избы и дома, но и железные мосты, и рельсы, и гигантские морские суда.

Чтобы показать примеры горючести в чистом кислороде веществ, не горящих или только тлеющих в воздухе, добудем немного этого газа.

Есть много способов выделить его в чистом виде. В технике он получается сгущением воздуха сильным давлением до 200 атмосфер и охлаждением (до - 180°). При испарении такого жидкого воздуха из него раньше всего выкипает азот. Оставшийся кислород представляет собою сильно магнитную жидкость красивого синего цвета. Применяется он для автогенной сварки и резки металлов: сжигая в особых горелках водород в струе чистого кислорода, получают длинное и острое пламя, имеющее температуру в 2000°. Стальное изделие пронизывается им насквозь раньше, чем вся масса металла успеет заметно нагреться; толстые листы котельного железа режутся, как масло ножом.

Рис. 24. Резка металла автогеном

Получают кислород и иначе. Так, окись бария[16] при нагревании присоединяет к себе кислород, обращаясь в перекись бария, а эта последняя при более сильном накаливании вновь его выделяет. В последние годы кислород из воздуха получают подобным способом, только вместо окиси бария пользуются другим, более сложным по составу веществом.

В учебниках химии обычно указывают на получение кислорода разложением окиси ртути или смеси хлорноватокалиевой соли (бертолетовой) и перекиси марганца (пиролюзита). Первый способ пригоден для получения очень незначительных количеств газа, второй не безопасен, и оба требуют сильного нагревания.

Лучше всего иллюстрировать опасность бертолетовой соли, этого невинного лекарства для полоскания горла[17], такой картинкой:

"Случай выделения наибольшего количества кислорода, какое только нам известно, произошел 12 мая 1899 г. на химическом заводе в Сент-Геленсе благодаря тому, что бертолетовая соль случайно слишком нагрелась. Около 150 тонн приготовленной соли, упакованной в бочках, находились на складе в ожидании отправки. Каким-то образом искра от бочки, которую вкатывали в помещение, где кристаллизуется соль, попала в деревянную раму кристаллизационного чана. Дерево это, будучи пропитано бертолетовой солью, было в высокой степени способно к воспламенению. И действительно, вспыхнул страшный огонь, который поднялся вверх, и через несколько минут крыша здания была охвачена пламенем. Тут произошла страшная сцена: невероятный жар, накаляя ряд за рядом тесно сложенные бочки с бертолетовой солью, вызвал выделение огромного количества чистого кислородного газа, который расходился во все стороны. Все деревянные постройки, погруженные таким образом в атмосферу чистого кислорода, горели со страшной силой, так что вскоре все здание раскалилось добела, горя с ослепительным блеском, как в плавильной печи. Наконец, когда кислород не мог уже более достаточно быстро выделяться из боченков, соль взорвалась.


Владимир Рюмин читать все книги автора по порядку

Владимир Рюмин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Занимательная химия отзывы

Отзывы читателей о книге Занимательная химия, автор: Владимир Рюмин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.