My-library.info
Все категории

Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям. Жанр: Науки о космосе год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мир в ореховой скорлупке (илл. книга-журнал)
Дата добавления:
16 сентябрь 2020
Количество просмотров:
153
Читать онлайн
Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям

Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям краткое содержание

Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям - описание и краткое содержание, автор Хокинг Стивен Уильям, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Мир в ореховой скорлупке (илл. книга-журнал) читать онлайн бесплатно

Мир в ореховой скорлупке (илл. книга-журнал) - читать книгу онлайн бесплатно, автор Хокинг Стивен Уильям
Мир в ореховой скорлупке (илл. книга-журнал) - i_048.png
Рис 2.13 Суперпартнеры

Все известные частицы во Вселенной принадлежат к одной из двух групп: фермионам или бозонам.

Фермионы — это частицы с полуцелым спином (например, 1/2), из них состоит обычное вещество. Энергии их основного состояния отрицательны.

Бозоны — это частицы с целым спином (0, 1, 2 и т. п.). Они связаны с силами, которые действуют между фермионами, например с гравитационным взаимодействием и светом. Энергии их основного состояния положительны.

Теория супергравитации предполагает, что каждый фермион и каждый бозон имеют суперпартнера со спином, который либо на 1/2 больше, либо на 1/2 меньше спина самой частицы. Например, фотон (который является бозоном) имеет спин, равный 1. Его энергия основного состояния положительна. Суперпартнером фотона является фотино — фермион со спином 1/2. Поэтому его энергия основного состояния отрицательна.

В этой супергравитационной схеме мы получаем равное число бозонов и фермионов. Поместив энергии основного состояния бозонов на положительную чашу весов, а энергии фермионов — на отрицательную, мы увидим, что они компенсируют друг друга, устраняя самые большие бесконечности.

Модели поведения частиц

1. Если точечные частицы действительно представляют собой дискретные объекты наподобие бильярдных шаров, тогда при столкновении они должны отклоняться и переходить на новые траектории.

Мир в ореховой скорлупке (илл. книга-журнал) - i_049.png

2. Вот что происходит при взаимодействии двух частиц, хотя эффект может быть и более впечатляющим.

Мир в ореховой скорлупке (илл. книга-журнал) - i_050.png

3. Квантовая теория поля показывает, как сталкиваются две частицы, подобные электрону и его античастице, позитрону. Они на короткий момент аннигилируют друг с другом в яркой вспышке, порождая фотон, а он затем высвобождает энергию, порождая другую электрон-позитронную пару. Но это выглядит так, будто частицы просто отклонились, перейдя на новые траектории.

Мир в ореховой скорлупке (илл. книга-журнал) - i_051.png

4. Если частицы являются не безразмерными точками, а одномерными замкнутыми струнами, которые колеблются как электрон и позитрон, тогда при столкновении и аннигиляции они порождают новую струну с другой формой колебаний. Высвобождая энергию, она делится на две струны, продолжающие движение по новым траекториям.

Мир в ореховой скорлупке (илл. книга-журнал) - i_052.png

5. Если эти исходные струны рассматривать не в дискретные моменты, а на протяжении непрерывной, разворачивающейся во времени истории, то струны будут выглядеть как мировые поверхности.

Мир в ореховой скорлупке (илл. книга-журнал) - i_053.png

Не исключена, правда, возможность, что могут оставаться меньшие, но по-прежнему бесконечные величины. Никому пока не хватило упорства провести вычисления и выяснить, действительно ли эти теории полностью конечны.

По существующим оценкам, усердному студенту на это потребовалось бы лет двести, и потом неясно, как убедиться, что он не допустил ошибки уже на второй странице. Тем не менее вплоть до 1985 г. специалисты в основном верили, что большинство суперсимметричных теорий супергравитации должны быть свободны от бесконечностей.

А потом мода неожиданно изменилась. Было объявлено, что нет оснований полагать, будто теории супергравитации не содержат бесконечностей, и это привело к тому, что их стали считать безнадежно дефектными. Зато было провозглашено, что концепция, получившая название суперсимметричной теории струн, — единственное, что способно соединить гравитацию с квантовой теорией. Струны в данной теории, подобно тем, что встречаются обыденной жизни, являются одномерными объектами. У них есть только длина. Струны в теории струн движутся на фоне пространства-времени, а их колебания интерпретируются как частицы (рис. 2.14).

Мир в ореховой скорлупке (илл. книга-журнал) - i_054.jpg
Рис. 2.14. Колебания струн

В теории струн фундаментальные объекты не частицы, занимающие единственную точку в пространстве, а одномерные струны. Эти струны могут иметь концы или замыкаться на себя, образуя петли. В точности как струны скрипки, они могут поддерживать разные режимы колебаний или резонансные частоты, длины волн которых целое число раз укладываются между концами струны.

Но если разные частоты колебаний скрипичных струн порождают разные музыкальные тона, различные режимы колебаний в теории струн соответствуют разным массам и зарядам, что интерпретируется как различные фундаментальные частицы. Грубо говоря, чем короче длина волны колебания струны, тем больше масса частицы.

Если струны обладают грассмановскими измерениями наряду с обычными, их колебания будут соответствовать бозонам и фермионам. В этом случае положительные и отрицательные энергии основных состояний в точности сокращаются, так что не остается никаких бесконечностей, даже малого порядка. Суперструны, как было объявлено, представляют собой Теорию Всею.

Историкам науки в будущем наверняка будет интересно построить график колебания пристрастий физиков-теоретиков. Струны безраздельно властвовали несколько лет, а супергравитация была низведена до статуса приближенной теории, годной при низких энергиях. Ярлык «низких энергий» был просто убийственным, несмотря даже на то, что в данном контексте низкоэнергетическими считались частицы, в миллиард миллиардов раз превосходящие по энергии те, что образуются при взрыве тротила. Будь супергравитация низкоэнергетическим приближением, ее нельзя было бы считать фундаментальной теорией Вселенной. Вместо нее на эту роль претендовали целых пять различных теорий суперструн. Но какая же именно из этих пяти струнных теорий описывает нашу Вселенную? И как можно построить теорию струн за пределами того приближения, в котором струны представляются поверхностями с одним пространственным и одним временным измерением в плоском пространстве-времени? Не могут ли струны искривлять фон пространства-времени?

В следующие за 1985-м годы постепенно становилось ясно, что теория струн не дает законченной картины. Начать с того, что струны, как выяснилось, лишь один из элементов широкого класса объектов, которые могут иметь более одного измерения. Пол Таунсенд, который является, как и я, сотрудником факультета прикладной математики и теоретической физики Кембриджа и по большей части заложил основу для изучения таких объектов, стал называть их «р-бранами». Такая р-брана имеет протяженность в р направлениях. Так, при р = 1 брана является струной, при р = 2 — поверхностью или мембраной и т. д. (рис. 2.15).

Мир в ореховой скорлупке (илл. книга-журнал) - i_055.png
Рис. 2.15. Р-браны

Р-браны — это объекты, протяженные в р измерениях. Частными их случаями являются струны, для которых р = 1, и мембраны (р = 2), но в 10- или 11-мерном пространстве-времени возможны и большие значения р. Часто некоторые или все из р измерений свернуты наподобие тора.

Мир в ореховой скорлупке (илл. книга-журнал) - i_056.jpg

По-видимому, нет причин отдавать предпочтение струнам с р = 1 перед струнами с другими значениями р. Напротив, следует принять принцип р-бранной демократии: все р-браны созданы равными [8].

Мир в ореховой скорлупке (илл. книга-журнал) - i_057.jpg

Хокинг Стивен Уильям читать все книги автора по порядку

Хокинг Стивен Уильям - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мир в ореховой скорлупке (илл. книга-журнал) отзывы

Отзывы читателей о книге Мир в ореховой скорлупке (илл. книга-журнал), автор: Хокинг Стивен Уильям. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.