My-library.info
Все категории

Рауль Ибаньес - Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Рауль Ибаньес - Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
136
Читать онлайн
Рауль Ибаньес - Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Рауль Ибаньес - Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? краткое содержание

Рауль Ибаньес - Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? - описание и краткое содержание, автор Рауль Ибаньес, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.

Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? читать онлайн бесплатно

Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? - читать книгу онлайн бесплатно, автор Рауль Ибаньес

Вклад Римана

В любом случае революция, начатая Гауссом, проходила в трехмерном евклидовом пространстве. Многомерные случаи были еще впереди, а пока обычная аналитическая геометрия занималась изучением координатных пространств первых трех измерений (на прямой, на плоскости и в трехмерном пространстве). Как мы уже говорили, признать существование высших измерений было нелегкой задачей для ученых и философов. Однако в середине XIX в. многомерные пространства появились как естественное продолжение аналитической геометрии. Одной из двух важных работ, связанных с этим, была статья «Главы из аналитической геометрии п измерений» английского математика Артура Кэли (1821–1895). Второй базисной работой стали «Лекции о линейном расширении» немецкого математика и философа Германа Грассмана (1809–1877).

Потом появился доклад Римана, представленный в Гёттингенском университете, «О гипотезах, лежащих в основании геометрии». Он содержал великие геометрические идеи:

1. Понятие n-мерного геометрического пространства (называемого дифференцируемым многообразием), обобщающее понятие поверхности, данное Гауссом.

2. Понятие метрического тензора, обобщающее понятие расстояния, и изучение метрических отношений на дифференцируемых многообразиях (рождение геометрии Римана).

3. Обобщение понятия кривизны и других элементов внутренней геометрии поверхности на римановы n-мерные многообразия.

Понятие n-мерного дифференцируемого многообразия включает в себя тот факт, что локально его можно определить с помощью n локальных координат x1, …, xn, а также законов их преобразований. Геометрическое пространство (дифференцируемое многообразие) необязательно связано с реальным пространством, но может быть любым объектом, в котором выполняются общие условия, заданные определением.

Более того, Риман отказался от обычного математического и философского подхода, согласно которому понятие пространства подразумевает расстояние, заданное как обычное евклидово расстояние. Этим он разделил понятия пространства (п-мерного дифференцируемого многообразия) и расстояния, называемого метрическим тензором Римана. Таким образом, в одном и том же пространстве могут существовать три расстояния, с которыми, конечно, связаны различные значения кривизны. Поэтому геометрия Римана является неевклидовой геометрией в гораздо более общем смысле, чем разработанная Лобачевским и Бойяи, так как она подразумевает большее количество измерений и ее кривизна может принимать разные значения в разных точках.

Риман также глубоко интересовался проблемами физики и попытался объединить физические силы природы — гравитационные, электрические и магнитные.

По его мнению, силы притяжения являются следствием геометрии пространства и его кривизны. Он надеялся, что введенная им новая геометрия позволит обобщить силы природы.

Его идеи являются фундаментальными для физики XX в. В частности, они заложили основы теории относительности. В 1905 г. немецкий физик Альберт Эйнштейн (1879–1955) вместе с нидерландским физиком и математиком Хендриком Лоренцем (1853–1928) и французским математиком Анри Пуанкаре (1854–1912) представил специальную теорию относительности. Вскоре после этого немецкий математик Герман Минковский (1864–1909) связал четырехмерное многообразие Римана, пространство-время, с пространственным метрическим тензором Римана, который содержал скорость света. Именно на основе этого пространства в 1916 г. была разработана общая теория относительности Эйнштейна.

* * *

БЕРНХАРД РИМАН (1826–1866)

Риман за свою короткую жизнь опубликовал всего несколько работ, зато они были исключительно высокого достоинства, так как в них он решил некоторые из наиболее сложных математических проблем. Также он ввел новые понятия и методы и кардинально изменил представление о пространстве. Он был застенчивым человеком и избегал публичных выступлений, а из-за слабого здоровья страдал частыми нервными срывами.

Детство его было скромным, что неудивительно: он был сыном пастуха, но это не помешало проявлению фантастических способностей к вычислениям и особого математического таланта. Еще в школе юный Бернхард прочитал книгу Лежандра по теории чисел, поглощая 900 страниц в неделю.

Начав учиться на факультете теологии и философии, Риман вскоре увлекся математикой, поэтому отправился изучать ее в Берлинский университет. Там он начал развивать свои идеи по теории функций комплексного переменного, написав по этой теме докторскую диссертацию под руководством Гаусса в Гёттингенском университете. В 1859 г. Риман опубликовал свою единственную работу по простым числам. Этой областью он увлекался в течение многих лет, сформулировав одну из самых известных в математике гипотез.



Карикатура на Римана авторства Херардо Басабе.


От научных кулуаров до кофейни

Красивые идеи, представленные в диссертации Римана, вскоре распространились по всем образовательным и научно-исследовательским учреждениям Европы. Многомерная дифференциальная геометрия наряду с неевклидовыми геометриями начала набирать популярность в математических и научных кругах. Исследования продолжались. В области неевклидовых геометрий строились новые модели пространств, а также предпринимались попытки сделать геометрии более последовательными, чтобы они не содержали логических противоречий. В дифференциальной геометрии здание, заложенное Риманом, продолжили строить такие известные итальянские математики, как Эудженио Бельтрами (1835–1900), Грегорио РиччиКурбастро (1853–1925) и Туллио Леви-Чивита (1873–1941), а также немецкий математик Элвин Бруно Кристоффель (1829–1900). Ученые того времени пытались применять элегантную теорию Римана, и хотя сначала это было нелегко (например, необходимо было дальнейшее развитие физики), наука XX в. показала истинное значение этой новой области геометрии.

В то же время математики и ученые начали распространять информацию о неевклидовых геометриях и геометрии Римана в академических кругах, проводя конференции, публикуя статьи в научных журналах и книгах, и мало-помалу эти идеи стали доступны широкой публике.

Одним из самых активных популяризаторов четвертого измерения был немецкий математик Герман фон Гельмгольц (1821–1894). Его статьи публиковались в Германии, Франции, Англии и США в 1860—1870-х гг.

Гельмгольц, как и некоторые из его современников, также использовал образ двумерных существ, живущих на сфере и на других поверхностях. Эти существа имеют свою собственную геометрию, отличную от евклидовой; в их геометрии, например, сумма внутренних углов треугольника не будет равна 180°. По поводу четвертого измерения Гельмгольц писал в своей работе «Популярные лекции о науке» (1881), что нам не удастся его вообразить, и приводил сравнение с человеком, который родился слепым и не может представить себе цвета.



Немецкий физик Герман фон Гельмгольц написал много работ по неевклидовой геометрии и о гипотетических многомерных мирах. Его идеи стали популярны среди широкой общественности во всем мире.


В то время как одни ученые работали над серьезными вопросами, другие решали более приземленные проблемы: как двумерные существа питаются, как устроен их кишечно-желудочный тракт, как они передвигаются, как выглядят их глаза, как устроено их зрение — эти и другие подобные вопросы, конечно, были более интересны широкой публике. В те времена выражение «четвертое измерение» стало синонимом любого многомерного пространства и понятия неевклидовой и многомерной геометрий часто отождествлялись.

Масштабы геометрической революции привели к тому, что эти вопросы стали темой наиболее важных научных и философских дискуссий конца XIX — начала XX в. Важнейшими среди них были вопросы о научной истине, связях между наукой и реальностью, о возможности существования пространств высших измерений, о структуре, функции и значении математики. Понятие пространства также подвергалось переосмыслению, и прежде всего был поставлен такой вопрос: наше пространство евклидово или неевклидово? Другими словами, какова форма нашего пространства?

Популяризация четвертого измерения также имела удивительные, даже магические аспекты, как мы увидим в четвертой главе. Оно означало существование сверхсуществ, всемогущих и вездесущих, умеющих проходить через стены и обладающих другими впечатляющими способностями. Это неизбежно привело к тому, что многомерные пространства стали вопросом религии и даже веры. Четырехмерное пространство можно рассматривать как свидетельство существования Бога или сверхъестественных существ. Например, христианские мыслители предполагали, что Бог и бессмертие могут быть связаны с нашим трехмерным миром через четвертое измерение.


Рауль Ибаньес читать все книги автора по порядку

Рауль Ибаньес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной? отзывы

Отзывы читателей о книге Мир математики: т.6 Четвертое измерение. Является ли наш мир тенью другой Вселенной?, автор: Рауль Ибаньес. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.