My-library.info
Все категории

Морис Клайн - Математика. Утрата определенности.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
236
Читать онлайн
Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности. краткое содержание

Морис Клайн - Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн

Наша наука началась с математики и, несомненно, недолго протянет после того, как из нее изымут математику (если такое изъятие вообще возможно). В нашем столетии множится число лабораторий для массового производства фактов. Останутся ли добываемые факты просто фактами или обратятся в науку, зависит от того, в какой степени они войдут в соприкосновение с духом математики.

Джон фон Нейман был обеспокоен судьбами математики настолько, что счел нужным предостеречь своих коллег. Свою позицию он изложил в очерке «Математик» (1947), часто цитируемом, но все же не привлекшем должного внимания:

На достаточно большом удалении от своего эмпирического источника и тем более во втором и в третьем поколении, когда математическая дисциплина лишь косвенно черпает вдохновение из идей, идущих от «реальности», над ней нависает смертельная опасность. Ее развитие все более и более определяется чисто эстетическими соображениями; она все более и более становится искусством для искусства. Само по себе это неплохо, если она взаимодействует с примыкающими математическими дисциплинами, обладающими более тесными эмпирическими связями, или если данная математическая дисциплина находится под влиянием людей с исключительно развитым вкусом. Но существует серьезная угроза, что математическая дисциплина будет развиваться по линии наименьшего сопротивления, что вдали от источника поток разветвится на множество ручейков и дисциплина превратится в хаотическое нагромождение деталей и сложностей. Иначе говоря, при большом отделении от эмпирического источника или после основательного абстрактного «инбридинга» математической дисциплине грозит опасность вырождения. При зарождении новой математической дисциплины ей обычно свойствен классический стиль. Когда же она начинает обретать черты барокко, то это сигнал опасности…

Во всяком случае, когда достигается стадия барокко, единственное спасительное средство я вижу в том, чтобы снова вернуться к источнику, произвести омолаживающую инъекцию идей более или менее прямого эмпирического происхождения. Я убежден, что такая эмпирическая «подпитка» была необходимым условием сохранения неувядаемой молодости и жизнеспособности математики в прошлом и что аналогичное утверждение остается в силе и в будущем.

([105], с. 95.)

Однако тенденция к превращению математики в своего рода искусство для искусства не была приостановлена. Математики продолжали все дальше отходить от естествознания и следовать своим собственным курсом. Чистые математики имеют обыкновение посматривать сверху вниз, как на презренных ремесленников, на тех, кто занимается прикладной математикой, видимо, стараясь заглушить таким образом муки совести. Трубный глас техники, жалуются они, заглушает сладкие звуки чистой математики. В то же время чистые математики чувствуют, что необходимо дать ответ на критику, подобную той, которую мы воспроизвели выше. Однако, давая такой ответ, они — возможно, по незнанию, а может быть, и умышленно искажая историю — утверждают, что многие из величайших достижений прошлого обязаны своим появлением чисто математическим интересам и тем не менее впоследствии нашли себе применение. Но присмотримся внимательнее к тем примерам, которые чистые математики заимствуют из истории. Так ли чиста та математика, которую они называют чистой?

Чаще всего в качестве подходящего примера чистые математики ссылаются на греческие работы о конических сечениях: параболе, эллипсе и гиперболе. По мнению чистых — математиков, эти кривые были исследованы греками, в первую очередь Аполлонием, ради удовлетворения чисто математического интереса. Тем не менее восемнадцать столетий спустя Кеплер доказал, что именно по коническим сечениям движутся вокруг Солнца планеты. Однако хотя ранняя история конических сечений доподлинно и неизвестна, но все же по свидетельству такого авторитетного историка, как Отто Нейгебауэр (р. 1899), параболы, эллипсы и гиперболы впервые возникли в работах, посвященных конструкции солнечных часов. Известно, что древние действительно использовали в солнечных часах эти кривые. Задолго до того, как Аполлоний посвятил коническим сечениям свой классический труд (гл. I), было известно, что параболы позволяют фокусировать падающий на них солнечный свет. Следовательно, физические приложения конических сечений в оптике — области науки, которой греки уделяли немало внимания, — несомненно, послужили толчком к некоторым из исследований по геометрии конических сечений.

Коническими сечениями греки занимались задолго до Аполлония в связи с решением знаменитой задачи об удвоении куба — построении ребра куба вдвое большего объема, чем данный куб. Для греческой геометрии, в которой единственный способ доказать существование того или иного объекта сводился к его построению, такого рода задачи имели первостепенное значение.

Разумеется, Аполлоний доказал сотни теорем о конических сечениях, не имеющих не только непосредственных приложений, но даже потенциально неприменимых. В этом отношении он мало чем отличался от современных математиков, которые, напав на благодатную тему, начинают разрабатывать ее либо по причинам, о которых говорилось выше, — из желания побольше узнать о чем-то важном либо из стремления ответить, так сказать, на интеллектуальный вызов.

Второй, наиболее часто приводимый пример чистой математики, впоследствии нашедшей, однако, немаловажные приложения, — неевклидова геометрия. По словам тех, кто ссылается на этот пример, получается, будто математики создали неевклидову геометрию, размышляя на досуге над тем, что произойдет, если изменить евклидову аксиому о параллельных. Но утверждать подобное — значит игнорировать более чем двухтысячелетнюю историю науки. Аксиомы Евклида считались самоочевидными истинами о реальном физическом пространстве (гл. I). Аксиома о параллельных, весьма произвольно и своеобразно сформулированная Евклидом, стремившимся избежать исходного предположения о существовании параллельной, по сравнению с остальными аксиомами была куда как менее очевидной. Многие усилия, затраченные на поиск более приемлемого варианта аксиомы, привели в конце концов к открытию: аксиома о параллельных не обязательно должна быть истинной — другая аксиома о параллельных, отличающаяся от евклидовой (и, следовательно, неевклидова геометрия), может так же хорошо описывать физическое пространство. Итак, подчеркнем главное: попытки доказать истинность аксиомы Евклида о параллельных предпринимались не для «услаждения мозгов, поднаторевших в умозрительных рассуждениях», а для того, чтобы удостовериться в истинности геометрии, лежащей в основе тысяч и тысяч теорем чистой и прикладной математики.

Чистые математики нередко ссылаются также на работы Римана, который обобщил известную в его время неевклидову геометрию и указал на существование целого семейства неевклидовых геометрий, получивших впоследствии название римановых геометрий (или геометрий римановых пространств). И в этом случае чистые математики полагают, будто Риман создал свои геометрии лишь с той целью, чтобы «посмотреть, что можно сделать». Думающие так глубоко заблуждаются. Как мы уже говорили, усилия математиков, направленные на устранение малейших сомнений в адекватности евклидовой геометрии окружающему нас миру, увенчались созданием неевклидовой геометрии, оказавшейся столь же пригодной для описания свойств физического пространства, как и евклидова геометрия. Существование двух различных геометрий заставило математиков задуматься над вопросом о том, что, собственно, нам достоверно известно о физическом пространстве? Этот вопрос послужил для Римана отправным пунктом для размышлений. Отвечая на него, Риман в своей лекции [106] 1854 г., которая была опубликована лишь после его смерти, развил общую теорию, включающую классическую геометрию Евклида и неевклидову геометрию Лобачевского — Бойаи в качестве частных случаев. Вследствие ограниченности наших физических знаний римановы геометрии могли оказаться столь же полезными для описания физического пространства, как и евклидова геометрия. Риман предвидел, что пространство и материю нужно рассматривать в неразрывной связи.{157} Следует ли удивляться после этого, что Эйнштейн счел риманову геометрию полезной? Предвидение Римана относительно физичности предложенной им геометрии отнюдь не умаляет остроумного применения, которое нашел римановой геометрии Эйнштейн. Применимость римановой геометрии явилась следствием работы над решением наиболее фундаментальной из физических проблем, которыми когда-либо занимались математики, — выяснением природы физического пространства.

Нельзя не упомянуть еще об одном примере. Одно из интенсивно развивающихся направлений современной математики — теория групп. По мнению чистых математиков, теория групп также была создана «из любви к искусству». Понятие группы ввел в математику Эварист Галуа (1811-1832), хотя неявно оно встречалось в работах Лагранжа, норвежца Абеля и итальянца Паоло Руффини (1765-1822). Внимание Галуа привлекла по существу самая простая и практически важная задача всей математики — разрешимость простых алгебраических уравнений, таких, как квадратное уравнение


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.