My-library.info
Все категории

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Том 26. Мечта об идеальной карте. Картография и математика
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
250
Читать онлайн
Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика краткое содержание

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика - описание и краткое содержание, автор Рауль Ибаньес, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Современный человек пользуется картами практически ежедневно: карты украшают стены школ, они помогают нам ориентироваться на местности, находить кратчайший путь из одного пункта в другой, изучать историю, географию, экономику и ряд других наук.Карты — важный рабочий инструмент для некоторых специалистов: моряков, летчиков, машинистов, топографов и проч. Но много ли мы знаем о том, как создаются карты? Для чего существует такое количество разнообразных карт и насколько все они точны?Прочитав эту книгу, вы узнаете множество новых и любопытных фактов о геометрии карт.

Том 26. Мечта об идеальной карте. Картография и математика читать онлайн бесплатно

Том 26. Мечта об идеальной карте. Картография и математика - читать книгу онлайн бесплатно, автор Рауль Ибаньес

Утверждение, обратное тому, что мы доказали, также будет верным: проекции сферы на плоскость, сохраняющие длины кривых, сохраняют и расстояния между точками. Причина в том, что расстояние между двумя точками — это длина кратчайшей кривой, их соединяющей.



Проекция, сохраняющая расстояния, сохраняет и углы

Читатель, возможно, понимает, что означает сохранение величин углов между двумя произвольными направлениями. Но чтобы лучше понять, как отображения сферы на плоскость изменяют углы, нужно подробнее рассмотреть используемые понятия, хотя при этом придется применить некоторые термины.

Рассмотрим произвольную точку сферы р, два направления, проходящие через эту точку, то есть два касательных вектора v1 и v2 а также угол θ между ними. Чтобы рассчитать, как изменятся касательные векторы и, следовательно, величина угла, будем действовать следующим образом. Рассмотрим две кривые на поверхности сферы, α1: (— ε, ε) —> S2 и α2: (— ε, ε) —> S2, которые проходят через точку р. Их касательными векторами в этой точке будут v1 и v2 (если говорить математическим языком, то α'1(0) = v1, α'2(0) = v2 геометрический смысл этих равенств представлен на следующей иллюстрации). Далее рассмотрим плоские кривые, которые будут отображениями этих кривых: , а также касательные векторы этих кривых в точке пересечения  то есть 



Эти векторы будут отображениями векторов v1 и v2 полученными проекцией φ. Если угол между w1 и w2 вновь будет равен θ, то проекция φ будет сохранять углы между векторами v1 и v2 (а также между кривыми а1 и а2 соответственно). Интересный момент: векторы w1 и w2 которые являются отображениями векторов v1 и v2 полученными проекцией φ, не зависят от исходных кривых а1 и а2 , следовательно, они также не зависят от угла между этими кривыми. Это позволяет, например, выбрать в качестве кривых а1 и а2 дуги больших кругов, проходящие через точку р, и касательные векторы v1 и v2 которые определяются единственным образом.

Следовательно, интуитивно понятно, что изометрические преобразования сохраняют величины углов. Если для двух больших кругов сферы, которые пересекаются в точке, мы рассмотрим окружность достаточно малого радиуса r с центром в этой точке (иными словами, эта окружность будет образована точками сферы, удаленными от центра окружности на некоторое расстояние r), то угол θ между двумя большими кругами (равный углу между их касательными векторами) будет приблизительно равен отношению длины дуги окружности, определяемой двумя большими кругами, и ее радиусом, умноженным на 2π.



Далее, если мы рассмотрим отображение, полученное проекцией, сохраняющей расстояния, то увидим, что проекциями больших кругов будут прямые (так как изометрические проекции сохраняют геодезические линии), а окружность радиуса r на сфере перейдет в окружность радиуса r, центр которой будет располагаться в точке пересечения полученных прямых на плоскости. Следовательно, так как проекция сохраняет расстояния, а формула, приведенная на предыдущей иллюстрации, выполняется на плоскости, угол между большими кругами также будет сохраняться.

Отображения, сохраняющие величины углов, называются равноугольными, конформными или изогональными. Последний термин напрямую указывает на то, что проекция сохраняет величины углов неизменными, а термин «конформный» означает «имеющий одинаковую форму» или «имеющий правильную форму». Таким образом, проекции, сохраняющие углы, сохраняют и формы, однако лишь для достаточно малых областей, что можно увидеть на картах в проекции Меркатора, о которых упоминалось в предисловии. На них по мере приближения к полюсам искажения становятся очень заметными.


Проекция, сохраняющая расстояния, сохраняет и площади

Это утверждение основано на том, что любую ограниченную область на поверхности сферы можно покрыть конечным числом областей, границами которых будут меридианы и параллели. Эти области можно считать прямоугольными, а их число будет достаточно большим, следовательно, их размеры невелики. Площадь исходной области можно будет приближенно выразить как сумму площадей этих «прямоугольников» (их площадь будет равна произведению основания на высоту). Отображением этой области будет прямоугольник на плоскости, покрытый множеством прямоугольников. Так как рассматриваемая проекция сохраняет расстояния, площадь этого прямоугольника будет равна площади исходной области.



Площадь произвольной территории, например Китая, можно представить как сумму площадей «прямоугольных» областей, ограниченных меридианами и параллелями. Чем меньше будут эти области, тем точнее мы сможем вычислить площадь искомой территории.


Проекции, сохраняющие площади, называются равновеликими, или гомолографическими. Следовательно, мы доказали, что отображения сферы на плоскость, сохраняющие расстояния (или длины кривых), оставляют неизменными площади, геодезические линии и величины углов — все интересующие нас метрические параметры.

Учитывая вышесказанное, можно сделать вывод: чтобы построить точную карту мира, нужно найти математическую проекцию сферы на плоскость, которая была бы изометрической. Приступим же к поискам.


В поисках изометрической проекции

Теперь, говоря о точной карте земного шара или его части, мы будем знать, что это означает и что требуется для построения такой карты. Остановимся и подумаем, какой должна быть корректная проекция земной сферы на плоскость, то есть изометрическая проекция, сохраняющая все интересующие нас метрические свойства. Логично предположить, что искомую карту следует составить на основе фотографий, сделанных с самолета или спутника.



Спутниковый снимок Европы.


Может показаться удивительным, но карты, созданные на основе спутниковых снимков, неточны: они не сохраняют ни одно из метрических свойств, указанных выше. Для нашей задачи не имеет значения величина ошибки, возникающая при построении этих карт. Более того, нас интересует адекватное изображение Земли из космоса, которое (если говорить о карте мира) напомнит, что Земля имеет круглую форму (работая с некоторыми картами Земли, мы забываем об этом). На спутниковых снимках земная поверхность представлена в центральной (перспективной), или сценографической проекции. Эта проекция не является изометрической, так как меридианы в ней не изображаются прямыми линиями, следовательно, эта проекция не сохраняет геодезические линии. Она также не сохраняет углы, так как проекции меридианов и параллелей не пересекаются под прямыми углами. Аналогично можно показать, что проекция не сохраняет и площади и, как следствие, не сохраняет длины кривых и расстояния.

Наша попытка построить точную карту с использованием сценографической проекции провалилась. Продолжим поиски изометрических проекций сферы на плоскость. Мы можем строить различные картографические проекции, сначала геометрически, затем — алгоритмически, пока не получим изометрическую проекцию, которая позволит создать заветную совершенную карту Земли. Это всем известный метод проб и ошибок, который имеет свои недостатки. В частности, число вариантов, которые потребуется рассмотреть, будет очень большим или даже бесконечно большим.

Вместо того чтобы создавать картографические проекции напрямую, изучать их свойства и отвергать их, если они окажутся неизометрическими (найти такую проекцию будет равносильно поискам иголки в стоге сена), попробуем несколько сузить поле поиска. Для этого сначала рассмотрим, достаточно ли построить отображение сферы на плоскость, которое априори сохраняет только один из параметров, рассмотренных выше, то есть только углы, только площади или только геодезические линии.

С формальной точки зрения это равносильно тому, чтобы ответить на вопрос: являются ли отношения следования, обозначенные стрелками на диаграмме на странице 58, отношениями эквивалентности? Иными словами, возможно ли, чтобы все преобразования, сохраняющие величины углов (конформные проекции), также сохраняли расстояния, то есть являлись бы изометрическими? Будет ли аналогичное утверждение справедливо для площадей и геодезических линий?


Рауль Ибаньес читать все книги автора по порядку

Рауль Ибаньес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Том 26. Мечта об идеальной карте. Картография и математика отзывы

Отзывы читателей о книге Том 26. Мечта об идеальной карте. Картография и математика, автор: Рауль Ибаньес. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.