My-library.info
Все категории

Морис Клайн - Математика. Утрата определенности.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
238
Читать онлайн
Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности. краткое содержание

Морис Клайн - Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн

38

Андроник Родосский, выпустивший в I в. до н.э. собрание сочинений Аристотеля, назвал «Органоном» свод работ последнего по логике и строению наук, написанных независимо одна от другой и, видимо, в разное время; названием «Новый органон» Бэкон подчеркивал и близость свою к Аристотелю (по теме), и резкое различие (по установкам).

39

Мистик Ньютон был уверен (без всяких оснований, разумеется, — ср. сказанное выше о так называемой «проблеме трех тел») в неустойчивости Солнечной системы, тогда как в XVIII в. атеист и крайний рационалист Лаплас столь же безосновательно утверждал, что он может доказать ее устойчивость.

40

Это принадлежащее (или приписываемое) Лапласу высказывание выразительно демонстрирует успехи, которые к тому времени сделал «галилеев подход» к естественнонаучным проблемам (математическая формула, а не физическое описание). Ньютону бог был необходим для того, чтобы объяснить гравитационное «дальнодействие» (можно полагать, что паскалевское «определение» бога: «сфера, центр которой находится всюду, а периферия нигде», полностью снимающее вопрос об «агенте», передающем гравитационное воздействие, было достаточно близко Ньютону); именно этот «теологический» характер теории Ньютона делал ее неприемлемой для рационалистов Лейбница и Гюйгенса. Лаплас же полностью принял завет Галилея; никогда не спрашивать «как?», если мы можем ответить на вопрос «на сколько?»; поэтому для него бог в ньютоновской системе мира оказался уже вовсе ненужным.

41

Здесь имеется в веду, что в более полной (и совершенной) трактовке принципа наименьшего действия и иных вариационных принципов механики и физики речь идет не о наименьшем, а об «экстремальном» (т.е., наименьшем или наибольшем) значении рассматриваемой величины.

42

Не особенно эрудированному в области геометрии, но глубоко мыслящему Канту были впрочем, свойственны и глубоко нетривиальные прозрения. Так, в 1846 г. он писал, что трехмерность нашего пространства вытекает из характера закона всемирного тяготения Ньютона; это совершенно верно, но было строго доказано лишь много позже. Далее Кант утверждал, что из другого закона притяжения сил вытекала бы иная структура пространства, иное число измерений, причем если иные пространства возможны, то весьма вероятно, что бог их где-то действительно разместил.

43

Понятия пространства, времени и геометрии Кант считал априорными, заранее вложенными в наш разум и не подлежащими критике или замене какими-либо иными представлениями; высокий авторитет Канта закрепил эти ложные установки. Весьма вероятно, что именно нежелание вступать в конфликт с позицией столь высокочтимого в Германии философа побудили Гаусса не только воздержаться от публикация своих открытий в области неевклидовой геометрии, но и категорически запретить знающим об этом друзьям рассказывать кому-либо об его истинных воззрениях.

44

Истории проблематики, связанной с пятым постулатом Евклида, посвящена, в частности, книга Роберто Бонолы «Неевклидова геометрия», впервые вышедшая в 1906 г. на итальянском языке. Английский перевод: Bonola R. Non-euclidean geometry. — N.Y. Dover Publ., 1955 ([26]; см. также [27]).

45

Приводимое ниже описание воспроизводит схему рассуждений Саккери с небольшими изменениями. [В частности, за исходный пункт своих рассуждений Саккери — как позже и Ламберт — принял не аксиому Плейфера, а предположение, равносильное утверждению о равенстве суммы углов треугольника 180°; в опровержение этого предположения утверждалось, что сумма углов треугольника меньше (соответственно больше) 180°. — Ред.]

46

Аналогичную мысль в свое время высказывал, правда мимоходом, и Ньютон, но на нее не обратили внимания.

47

Окончательного признания возможности неевклидовой геометрии у Ламберта все же не было; по-видимому, впервые решились на этот шаг упоминаемые ниже Ф.К. Швейкарт и его племянник Ф.А. Тауринус. Однако Ламберт высказал провидческую мысль о том, что неевклидова геометрия должна была бы выполняться на сфере мнимого радиуса, если бы такая сфера существовала; впоследствии эта, в то время казавшаяся бессодержательной, идея была реализована даже несколькими различными путями.

48

Книга Tentamen вышла в свет в 1832 г., однако уже в 1831 г. Я. Бойаи имел на руках оттиски своего Приложения (Appendix) к книге, один из которых он сразу же отправил Гауссу. Впрочем, Гаусс не получил этой работы и ознакомился с ней, лишь прочитав экземпляр книги своего друга Фаркаша Бойаи.

49

Саккери твердо считал, что доказал 5-й постулат Евклида; поэтому его никак нельзя считать создателем неевклидовой геометрии. Клюгеля и Ламберта в том контексте, в каком упоминает их автор, уместнее заменить Швейкартом и Тауринусом (ср. прим. {47}); однако малочисленность их публикаций на эту тему, которую они вскоре оставили (Ф.К. Швейкарт вообще был по специальности юристом, а не математиком), делает сомнительным их приоритет в создании неевклидовой геометрии. Более основательна стандартная точка зрения, приписывающая это выдающееся открытие Лобачевскому [первый публичный доклад на эту тему (1826); первая публикация (1829-1830)], Бойаи (явно независимая от Лобачевского публикация 1831-1832 гг.) и Гауссу.

50

И даже никакими экспериментами тоже; утверждение о существовании одной или многих прямых, проходящих через точку и не пересекающих AB, апеллирует к представлению о всем (бесконечном!) пространстве и потому непроверяемо; опыты же с измерением суммы углов треугольника в принципе могут помочь установить отличие этой суммы от 180°, но никогда — равенство 180°; ведь всегда можно опасаться, что полученное нами значение столь близко к 180° лишь потому, что выбранный треугольник слишком мал.

51

Лобачевский и Гаусс независимо осознали, что геометрия реального (физического) пространства может быть как евклидовой, так и неевклидовой. (Бойаи, заинтересованного в первую очередь в, так сказать, «логическом статусе» новой геометрии, эта постановка вопроса занимала меньше.)

52

Ее чаще называют сферической — трехмерную сферическую (или удвоенную эллиптическую) геометрию можно трактовать как геометрию (трехмерной) сферической поверхности шара четырехмерного евклидова пространства.

53

Впоследствии Феликс Клейн рассмотрел еще одну простую неевклидову геометрию, родственную удвоенной эллиптической геометрии, но отличающуюся от нее тем, что здесь уже любые две прямые пересекаются в одной точке. Клейн назвал такую геометрию просто эллиптической. [Риман, который рассматривал строение геометрий лишь в «малом», в окрестности одной точки пространства, не ставил вопроса о глобальной структуре введенных им пространств; именно это и позволяет — как весьма часто делают — считать его создателем и эллиптической геометрии. — Ред.]

54

Хорошо известно, как страдал Лобачевский от непризнания его работ в официальных кругах, в частности в Российской академии наук; не получил никакого признания и Appendix Я. Бойаи. Характерно также, что еще в 1869-1870 гг. видный французский математик, академик Жозеф Бертран (1822-1900) печатал в «Докладах» Парижской академии наук свои «опровержения» неевклидовой геометрии, к которым он относился с полной серьезностью.

55

Типичная для 2-й половины XX в. «арифметизация математики», попытка построить все математические дисциплины на, казалось бы, незыблемом фундаменте арифметики, обычно связывается с главой берлинской математической школы Карлом Вейерштрассом (1815-1897) и другими берлинскими математиками [Леопольдом Кронекером (1823-1891), Георгом Фробениусом (1849-1917), Эрнстом Куммером (1810-1893) и др.].

56

И даже ранее: векторный характер перемещений, скоростей, сил был по существу знаком еще античным ученым; само это представление, как и «правило параллелограмма» сложения векторов, сложилось еще в школе Аристотеля; широко использовал это представление и Архимед.

57

В наши дни термин «гиперкомплексные числа» все более вытесняется (странным) термином алгебра: под этим словом понимают как целую ветвь математики, так и, в более узком смысле, совокупность гиперкомплексных чисел определенного рода.


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.