82. Schrodinger E. Nature and the Greeks. — New York: Cambridge University Press, 1954.
83. Sentilles D. A Bridge to Advanced Mathematics. — Baltimore: Williams & Wilkins, 1975.
84.Snapper E. What is Mathematics? — Amer. Math. Month.,1979, 86, p. 551-557.
85. Stone M. The Revolution in Mathematics. — Amer. Math. Month.,1961, 68, p. 715-734.
86. Tarski A. Introduction to Logic and to the Methodology of Deductive Sciences, 2nd ed. — New York: Oxford University Press, 1946. [Русский перевод 1-го изд.: Тарский А. Введение в логику и методологию дедуктивных наук. — М.: ИЛ, 1948.]
87. Tarski A. Truth and Proof. — Scientific American,June 1969, p. 63-77.
88. Waisman F. Introduction to Mathematical Thinking. — New York: Harper & Row, 1959.
89. Wavre R. Is There a Crisis in Mathematics? — Amer. Math. Month.,1934, 41, p. 488-499.
90. Weil A. The Future of Mathematics. — Amer. Math. Month.,1950, 57, p. 295-306.
91. Weyl H. A Half-Century of Mathematics. — Amer. Math. Month.,1951, 58, 523-553. [Русский перевод: Вейль Г. Полвека математики. — M.: Знание, 1969.]
92. Weyl H. Mathematics and Logic. — Amer. Math. Month,1946, 53, p. 2-13,
93. Weyl H. Philosophy of Mathematics and Natural Sciences. — Princeton: University Press, 1949. [Немецкий оригинал: Weyl H. Philosophie der Mathematik und Naturwissenschaften. — München: Oldenberg, 1922; русский перевод (частичный): Вейль Г. О философии математики. — М.: Гостехиздат, 1934, с. 34-91; 2-е изд. доп. и перераб. München: Leibniz Verlag, 1950; русский перевод отрывков — в кн.: Прикладная математика (под ред. Э. Беккенбах). — М.: Мир, 1968, с. 309-361.]
94. White L.A., The Locus of Mathematical Reality: An Anthropological Footnote. — Philosophy of Science,1947, 14, p. 289-303; vol. IV, p. 2348-2364.
95. Whitehead A.N., Russell В. Principia Mathematica, 3 vols. — New York: Cambridge University Press., 1st ed., 1910-1913; 2nd ed., 1925-1927.
96. Wigner E.P. The Unreasonable Effectiveness of Mathematics. — Corn. Pure and Appl. Math.,1960, 13, 1-14. [Русский перевод: Вигнер Е. Непостижимая эффективность математики в естественных науках. — В кн.: Вигнер Е. Этюды о симметрии. — М.: Мир, 1971, 182-198; также: УФН, т. 94, вып. 3. 1968, с. 535-546; в кн.: Проблемы современной математики. — М.: Знание, 1971, с. 22-33.]
97. Wilder R.L. Introduction to the Roundations of Mathematics, 2nd ed. — New York: John Wiley, 1965.
98. Wilder R.L. The Nature of Mathematical Proof. — Amer. Math.,1944, 51, p. 309-323.
99. Wilder R.L. The role of Axiomatic Method. — Amer. Math. Month.,1967, 74, p. 115-127.
100. Wilder R.L. The Role of Intuition. — Science,1967, 156, p. 605-610.
Дополнительная литература
1. Пуанкаре А. О науке. — M.: Наука, 1983.
2. Бурбаки H. Теория множеств. — М.: Мир, 1965.
3. Лейбниц Г.В. Переписка с Кларком. — В кн.: Сочинения, т. 1. — М.: Мысль, 1982, с. 430-528.
4. Манин Ю.И. Математика и физика. — М.: Знание, 1979.
5. Ван дер Варден Б.Л. Пифагорейское учение о гармонии. — В кн.: Пробуждающаяся наука. — М.: Физматгиз, 1959.
6. Аристотель. Сочинения в 4-х томах. — М.: Мысль, 1976 (т. 1), 1981 (т. 3).
7. Платон. Сочинения в 3-х томах. Т. 3, ч. 1. — М.: Мысль, 1971.
8. Аристотель. Аналитики первая и вторая. — М.: Госполитиздат, 1952.
9. Юшкевич А.П. История математики в средние века. — М.: Физматгиз, 1961.
10. Баткин Л.М. Итальянские гуманисты: стиль жизни, стиль мышления. — М.: Наука, 1978.
11. Коперник Н. О вращениях небесных сфер. Серия «Классики науки». — М.: Наука, 1964.
12. Данилов Ю.А., Смородинский Я.А. Иоганн Кеплер: от «Мистерии» до «Гармонии». — УФН, 109, 1973, вып. 1, 175-209.
13. Паскаль Б. Письма к провинциалу, или Письма Людовика Монтальта к другу в провинцию и отцам иезуитам о морали и политике иезуитов. — Спб., 1898.
14. Декарт Р. Рассуждение о методе с приложениями. Серия «Классики науки». — М.: Наука, 1953.
15. Декарт Р. Правила для руководства ума. — М. — Л.: Соцэкгиз, 1936.
16. Декарт Р. Избранные произведения. — М.: Госполитиздат, 1950.
17. Галилей Г. Избранные труды в 2-х томах. Т. 2. — М.: Наука, 1964.
18. Кант И. Сочинения в 6-ти томах. — М.: Мысль, 1964 (т. 3), 1965 (т. 4), 1966 (т. 6).
19. Гюйгенс X. Трактат о свете. — М. — Л.: ОГИЗ, 1935.
20. Ньютон И. Математические начала натуральной философии. Собрание трудов академика А.Н. Крылова. Т. 7. — М. — Л.: Изд-во АН СССР, 1936.
21. Беркли Дж. Сочинения. — М.: Мысль, 1978.
22. Ньютон И. Оптика, или трактат об отражениях, преломлениях, изгибаниях и цветах света. — М.: Гостехиздат, 1954.
23. Бэкон Ф. Сочинения в 2-х томах. — М.: Мысль, 1977 (т. 1); 1978 (т. 2).
24. Об основаниях геометрии. Сб. классических работ по геометрии Лобачевского и развитию ее идей. — М. — Л.: Гостехиздат, 1956.
25. Начала Евклида. — М. — Л.: Гостехиздат, 1948 (книги 1—VI), 1949 (книги VII-X).
26. Бонола Р. Неевклидова геометрия. — Спб.: Общественная польза, 1910.
27. Каган В.Ф. Лобачевский. — М. — Л.: Изд-во АН СССР, 1948.
28. Каган В.Ф. Лобачевский и его геометрия. — М.: Гостехиздат, 1956, с. 193-194.
29. Больяи (Бойаи) Я. Appendix. Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида, что a prioriникогда решено быть не может, с прибавлением, к случаю ложности, геометрической квадратуры круга. — М. — Л.: Гостехиздат, 1950, 235 с.
30. Рашевский П.К. О догмате натурального ряда. — Успехи математических наук, 28, вып, 4 (172), 1973, с. 243-246.
31. Эйнштейн А. Собрание научных трудов. Т. 2. — М.; Наука, 1966.
32. Фейнберг Е.Л. Кибернетика, логика, искусство. — М.: Радио и связь, 1981.
33. Архимед. Сочинения. — М.: Физматгиз, 1962.
34. Диофант Александрийский. Арифметика и Книга о многоугольных числах. — М.: Наука, 1974; Башмакова И.Г. Диофант и диофантовы уравнения. — М.: Наука, 1972; Башмакова И.Г., Славутин И. История диофантова анализа от Диофанта до Ферма. — М.: Наука, 1984.
35. Бируни Абу Рейхан. Избранные произведения. Т. 2. — Ташкент: Фан, 1963.
36. Аль-Хорезми. Математические трактаты. — Ташкент: Фан, 1983.
37. Мухаммед ибн Муса аль-Хорезми. — М.: Наука, 1983.
38. Кавальери Б. Геометрия, изложенная новым способом при помощи неделимых непрерывного, с приложением «опыта IV» о применении неделимых к алгебраическим степеням. — М. — Л.: Гостехиздат, 1940.
39. Кеплер И. Новая стереометрия винных бочек, преимущественно австрийских, как имеющих самую выгодную форму, и исключительно удобное употребление для них кубической линейки с присоединением дополнения к архимедовой стереометрии. — М. — Л.: Гостехиздат, 1935.
40. Eleckenstein S.О. Der Prioritätsstreit zwischen Leibnitz und Newton. — Basel: Birkhäuser, 1976.
41. Boyer C.B. The History of the Calculus and Its Conceptual Development. — N.Y.: Dover, 1959.
42. Baron M.E. The Origins of the Infinitesimal Calculus. — Oxford: Pergamon, 1969.
43. Priestley W.M. Calculus: An Historical Approach. — N.Y.: Springer, 1979.
44. Edwards C.H. The Historical Development of the Calculus. — N.Y.: Springer, 1979.
45. Карно Л. Размышления о метафизике исчисления бесконечно малых. — М. — Л.: Гостехиздат, 1933.
46. Дедекинд Р. Непрерывность и иррациональные числа. — Одесса: Матезис, 1923.
47. Дедекинд Р. Что такое числа и для. чего они служат. — Казань: Изд-во Императорского университета, 1905.
48. Делоне Б.Н. Элементарное доказательство непротиворечивости геометрии Лобачевского. — М.: Гостехиздат, 1956.
49. Яглом И.М. Аксиоматические обоснования евклидовой геометрии. В кн.: Новое в школьной математике. — М.: Знание, 1972, с. 40-63.