My-library.info
Все категории

Морис Клайн - Математика. Утрата определенности.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
236
Читать онлайн
Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности. краткое содержание

Морис Клайн - Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн

Сначала новая теория получила поддержку лишь у математиков. И это не было неожиданным. Только математики были убеждены в том, что Вселенная построена на простых математических принципах, только у математиков хватило интеллектуальной смелости, чтобы преступить через широко распространенные философские, религиозные и научные контраргументы и по достоинству оценить математические преимущества новой, революционной астрономии. Нужно было обладать неколебимой уверенностью в значимости математических принципов, на которых зиждется Вселенная, чтобы отстаивать новую теорию перед лицом сильнейшей оппозиции. 

Однако затем гелиоцентрическая теория получила неожиданное подкрепление. В начале XVII в. был изобретен телескоп, и Галилей, прослышав об этом изобретении, сам построил телескоп и приступил к наблюдениям неба. Результаты наблюдений повергли в изумление современников Галилея. Он обнаружил у Юпитера четыре луны (в современные телескопы мы можем наблюдать 12 спутников Юпитера). Это открытие означало, что у движущейся планеты могут быть естественные спутники. Галилей наблюдал неровности и горы на поверхности Луны, пятна на Солнце, странные выступы по обе стороны экватора на Сатурне (сейчас мы знаем, что за выступы Галилей принял кольца Сатурна). Эти наблюдения явились еще одним свидетельством того, что планеты схожи с Землей и заведомо не являются идеальными телами, состоящими, как полагали греки и средневековые мыслители, из какого-то особого эфирного вещества. Млечный Путь, ранее казавшийся широкой светлой полосой, при наблюдении в телескоп «распался» на мириады звезд. В небесах были рассеяны множества других солнц и, возможно, другие планетные системы. Коперник предсказывал, что если бы человеческое зрение было более острым, то человек мог бы наблюдать фазы Венеры и Меркурия так же, как он может невооруженным глазом наблюдать различные фазы Луны. С помощью телескопа Галилей обнаружил фазы Венеры. Произведенные наблюдения убедили Галилея в правильности теории Коперника, и в своем классическом труде «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» (1632) он решительно выступает в защиту новой теории. Теория Коперника завоевала признание еще и потому, что позволяла астрономам, географам и мореплавателям упростить вычисления. К середине XVII в. научный мир принял гелиоцентрическую систему. Уверенность в истинности математических законов природы возросла неизмеримо. 

Отстаивать тезисы об обращении Земли вокруг Солнца и о суточном вращении Земли вокруг своей оси в интеллектуальной атмосфере начала XVII в. было отнюдь не просто. Всем известно о процессе, который инквизиция устроила над Галилеем. Набожный католик Паскаль обнаружил свои сочинения в Индексе запрещенных книг за то, что в «Письмах к провинциалу» опрометчиво выразил порицание иезуитам: 

Напрасно также было с вашей стороны испрашивать в Риме декрет об осуждении мнения Галилея относительно движения Земли. Не этим будет доказано, что она стоит неподвижно; если бы имелись несомненные наблюдения, которые доказали бы, что именно она-то и вращается, то все люди в мире не помешали бы ей — вращаться, и себе — вращаться вместе с нею.

([13], с. 336.) 

Коперник и Кеплер, не усомнившись, приняли синтез греческого учения о природе, основанной на математических принципах, и католического догмата о боге — творце и создателе Вселенной. Рене Декарт (1596-1650) вознамерился развить новую философию науки систематически, ясно и обоснованно. Декарт прежде всего был философом, во-вторых, он занимался проблемами космологии, в-третьих, был физиком, в-четвертых, — биологом и, только в-пятых, — математиком, хотя он и считается одним из основных творцов новой математики. Философия Декарта имеет весьма важное значение, поскольку именно она оказала решающее влияние на формирование самого стиля мышления, характерного для XVII в., и на таких гигантов, как Ньютон и Лейбниц.{18} Свою главную цель Декарт видел в нахождении способа, позволяющего устанавливать истину в любой области, и посвятил ей основной труд — «Рассуждение о методе, чтобы хорошо направлять свой разум и отыскивать истину в науках» (1637) ([14], с. 5-66). 

Создавая свою философию, Декарт начинает с того, что принимает лишь те факты, которые представляются ему несомненными. Каким же образом удается ему провести различие между приемлемыми и неприемлемыми фактами? В своих «Правилах для руководства ума» (написанных в 1628 г., но опубликованных лишь посмертно) Декарт утверждает: «В предметах нашего исследования надлежит отыскивать не то, что о них думают другие или что мы предполагаем о них сами, но то, что мы ясно и очевидно можем усмотреть или надежно дедуцировать, ибо знание не может быть достигнуто иначе» ([15], с. 55). Человеческий разум непосредственно, силой интуиции, воспринимает основные, ясные и очевидные истины, а вывод следствий составляет сущность философии знания. Таким образом, по Декарту, существуют лишь два акта мышления, позволяющих нам получать новое знание без опасения впасть в ошибку: интуиция и дедукция. Однако в своих «Правилах для руководства ума» Декарт отдает предпочтение интуиции: 

Под интуицией я разумею не веру в шаткое свидетельство чувств и не обманчивое суждение беспорядочного воображения, но понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума и благодаря своей простоте более достоверное, чем сама дедукция, хотя последняя и не может быть плохо построена человеком.

([15], с. 57)

В «Рассуждениях о методе» Декарт отстаивал существование разума и достоверного, надежного знания, которым разум обладает. Опираясь на первичную интуицию, Декарт пытается в «Размышлениях о методе» доказать существование бога. Затем с помощью рассуждений, явно образующих порочный круг, Декарт убеждает себя в том, что наша интуиция и метод дедукции должны приводить к верным заключениям, поскольку бог не стал бы вводить нас в заблуждение.{19} «Под словом «бог», — утверждает Декарт в «Метафизических размышлениях» (1641), — я подразумеваю субстанцию бесконечную, вечную, неизменную, независимую, всемогущую, создавшую и породившую меня и все остальные существующие вещи» ([16], с. 363). 

Что же касается собственно математических истин, то в «Метафизических размышлениях» Декарт говорит следующее: «Я считал наиболее достоверными те истины, которые ясно воспринимал как относящиеся к фигурам, числам и другим материям, принадлежащим арифметике, геометрии и вообще чистой и абстрактной математике… Только математикам дано достичь несомненности и ясности, ибо они исходят из того, что наиболее легко и просто». Источником математических понятий и истин являются не ощущения. Они носят врожденный характер и присущи нашему разуму от рождения; наделяет же ими наш разум сам бог. Чувственное восприятие материального треугольника не может помочь разуму составить представление об идеальном треугольнике. Для разума вполне очевидно, что сумма углов треугольника должна быть равна 180°. 

Затем Декарт обращается к физическому миру. Можно не сомневаться, утверждает он, в том, что интуитивные представления, ясно сознаваемые разумом, и получаемые из них дедуктивные заключения применимы к физическому миру. Декарту было ясно, что бог при сотворении мира руководствовался математическими принципами. В «Рассуждениях о методе» он говорит о существовании «законов, установленных богом в природе, и понятий, запечатленных им в наших душах. Коль скоро мы достаточно поразмыслим над ними, то не станем более сомневаться в их проявлениях во всем, что существует и происходит в мире».

Далее Декарт утверждает, что законы природы неизменны, так как составляют неотъемлемую часть предустановленного богом математического плана. Еще до выхода в свет «Рассуждения о методе» Декарт в письме от 15 апреля 1630 г., адресованном отцу Марену Мерсенну, теологу и близкому другу математиков{20}, утверждал: 

Не бойтесь всюду провозглашать, что бог установил эти законы в природе так же, как суверен устанавливает законы в своем королевстве… И подобно тому как король обретает тем большее величие, чем меньше знают его подданные, мы считаем величие бога непостижимым и не мыслим себя без небесного царя. Кто-нибудь возразит Вам, заметив, что если бог установил эти истины, то он же может изменить их, как изменяет король свои законы. На подобное возражение следует ответить, что такое действительно возможно, если может изменяться божья воля. Я не считаю эти истины вечными и неизменными по тем же причинам, по которым сужу о боге.


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.