My-library.info
Все категории

Математика. Утрата определенности. - Клайн Морис

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Математика. Утрата определенности. - Клайн Морис. Жанр: Математика год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Дата добавления:
17 сентябрь 2020
Количество просмотров:
152
Читать онлайн
Математика. Утрата определенности. - Клайн Морис

Математика. Утрата определенности. - Клайн Морис краткое содержание

Математика. Утрата определенности. - Клайн Морис - описание и краткое содержание, автор Клайн Морис, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Клайн Морис

Создавая свою философию, Декарт начинает с того, что принимает лишь те факты, которые представляются ему несомненными. Каким же образом удается ему провести различие между приемлемыми и неприемлемыми фактами? В своих «Правилах для руководства ума» (написанных в 1628 г., но опубликованных лишь посмертно) Декарт утверждает: «В предметах нашего исследования надлежит отыскивать не то, что о них думают другие или что мы предполагаем о них сами, но то, что мы ясно и очевидно можем усмотреть или надежно дедуцировать, ибо знание не может быть достигнуто иначе» ([15], с. 55). Человеческий разум непосредственно, силой интуиции, воспринимает основные, ясные и очевидные истины, а вывод следствий составляет сущность философии знания. Таким образом, по Декарту, существуют лишь два акта мышления, позволяющих нам получать новое знание без опасения впасть в ошибку: интуиция и дедукция. Однако в своих «Правилах для руководства ума» Декарт отдает предпочтение интуиции: 

Под интуицией я разумею не веру в шаткое свидетельство чувств и не обманчивое суждение беспорядочного воображения, но понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума и благодаря своей простоте более достоверное, чем сама дедукция, хотя последняя и не может быть плохо построена человеком.

([15], с. 57)

В «Рассуждениях о методе» Декарт отстаивал существование разума и достоверного, надежного знания, которым разум обладает. Опираясь на первичную интуицию, Декарт пытается в «Размышлениях о методе» доказать существование бога. Затем с помощью рассуждений, явно образующих порочный круг, Декарт убеждает себя в том, что наша интуиция и метод дедукции должны приводить к верным заключениям, поскольку бог не стал бы вводить нас в заблуждение. {19}«Под словом «бог», — утверждает Декарт в «Метафизических размышлениях» (1641), — я подразумеваю субстанцию бесконечную, вечную, неизменную, независимую, всемогущую, создавшую и породившую меня и все остальные существующие вещи» ([16], с. 363). 

Что же касается собственно математических истин, то в «Метафизических размышлениях» Декарт говорит следующее: «Я считал наиболее достоверными те истины, которые ясно воспринимал как относящиеся к фигурам, числам и другим материям, принадлежащим арифметике, геометрии и вообще чистой и абстрактной математике… Только математикам дано достичь несомненности и ясности, ибо они исходят из того, что наиболее легко и просто». Источником математических понятий и истин являются не ощущения. Они носят врожденный характер и присущи нашему разуму от рождения; наделяет же ими наш разум сам бог. Чувственное восприятие материального треугольника не может помочь разуму составить представление об идеальном треугольнике. Для разума вполне очевидно, что сумма углов треугольника должна быть равна 180°. 

Затем Декарт обращается к физическому миру. Можно не сомневаться, утверждает он, в том, что интуитивные представления, ясно сознаваемые разумом, и получаемые из них дедуктивные заключения применимы к физическому миру. Декарту было ясно, что бог при сотворении мира руководствовался математическими принципами. В «Рассуждениях о методе» он говорит о существовании «законов, установленных богом в природе, и понятий, запечатленных им в наших душах. Коль скоро мы достаточно поразмыслим над ними, то не станем более сомневаться в их проявлениях во всем, что существует и происходит в мире».

Далее Декарт утверждает, что законы природы неизменны, так как составляют неотъемлемую часть предустановленного богом математического плана. Еще до выхода в свет «Рассуждения о методе» Декарт в письме от 15 апреля 1630 г., адресованном отцу Марену Мерсенну, теологу и близкому другу математиков {20}, утверждал: 

Не бойтесь всюду провозглашать, что бог установил эти законы в природе так же, как суверен устанавливает законы в своем королевстве… И подобно тому как король обретает тем большее величие, чем меньше знают его подданные, мы считаем величие бога непостижимым и не мыслим себя без небесного царя. Кто-нибудь возразит Вам, заметив, что если бог установил эти истины, то он же может изменить их, как изменяет король свои законы. На подобное возражение следует ответить, что такое действительно возможно, если может изменяться божья воля. Я не считаю эти истины вечными и неизменными по тем же причинам, по которым сужу о боге.

В приведенном отрывке из письма Декарт отрицает распространенное в его времена мнение о том, что бог непрестанно вмешивается во все, что происходит в природе. {21}

 Для изучения физического мира Декарт хотел бы использовать только математику, ибо, по его собственному признанию в «Рассуждении о методе», «из всех, кто когда-либо занимался поиском истины в науках, только математикам удалось получить некие доказательства, т.е. указать причины, очевидные и достоверные». По мнению Декарта, одной лишь математики было бы вполне достаточно для изучения физического мира. В «Принципах философии» (1644) он пишет: 

Я прямо заявляю, что мне неизвестна иная материя телесных вещей, как только всячески делимая, могущая иметь фигуру и движимая, иначе говоря, только та, которую геометры обозначают названием величины и принимают за объект своих доказательств; я ничего в этой материи не рассматриваю, кроме ее делений, фигур и движения {22}, и, наконец, ничего не сочту достоверным относительно нее, что не будет выведено с очевидностью, равняющейся математическому доказательству. И так как этим путем, как обнаружится из последующего, могут быть объяснены все явления природы, то, мне думается, не следует в физике принимать других начал, кроме вышеизложенных, да и нет оснований желать их.

([16], с. 504-505.) 

В «Принципах философии» Декарт прямо называет математику сущностью всех наук. По словам Декарта, он «не приемлет и не надеется найти в физике каких-либо принципов, отличных от тех, которые существуют в Геометрии или в Абстрактной Математике, потому, что они позволяют объяснить все явления природы и привести доказательства, не оставляющие сомнений». Объективный мир, по Декарту, есть не что иное, как материализованное пространство или воплощенная геометрия. Его свойства поэтому должны выводиться из первых принципов геометрии (термин «геометрия» Декарт и его современники употребляли практически как синоним математики, так как геометрия тогда составляла значительную часть всей математики). {23} 

Размышлял Декарт и над вопросом, почему мир должен быть доступен анализу математическими средствами. По мнению Декарта, наиболее фундаментальными и надежными свойствами материи являются форма, протяженность и движение в пространстве и во времени. Все эти свойства поддаются математическому описанию. Так как форма сводится к протяженности, Декарт утверждал: «Дайте мне протяженность и движение, и я построю Вселенную». Все физические явления, добавляет Декарт, — результат механического действия молекул, приводимых в движение силами. Силы также подчиняются неизменным математическим законам. 

Каким образом объяснял Декарт вкусы, запахи, краски, тембр, высоту и громкость звуков, если внешний мир, по его воззрениям, состоял лишь из движущейся материи? В этих вопросах Декарт принял точку зрения греков, а именно учение Демокрита о первичных и вторичных качествах. Первичные качества — материя и движение — существуют в физическом мире; вторичные качества — вкус, запах, цвет, тепло, приятность или резкость звука — не более чем результат воздействия первичных качеств на органы чувств человека, осуществляемого бомбардировкой этих органов внешними атомами. Реальный мир — совокупность допускающих математическое описание движений предметов в пространстве и во времени, а вся Вселенная в целом представляет собой огромную гармоничную машину, построенную на математической основе. Естественные науки (а в действительности любая дисциплина, пытающаяся установить порядок и меру) подчинены математике. Правило IV декартовских «Правил для руководства ума» гласит: 


Клайн Морис читать все книги автора по порядку

Клайн Морис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Клайн Морис. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.