My-library.info
Все категории

Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Том 38. Измерение мира. Календари, меры длины и математика
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
184
Читать онлайн
Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика

Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика краткое содержание

Иоланда Гевара - Том 38. Измерение мира. Календари, меры длины и математика - описание и краткое содержание, автор Иоланда Гевара, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Измерения играют важнейшую роль в современной науке, но без них немыслима и повседневная жизнь. Например, без измерений невозможно узнать, что находится рядом с нами, а что — вдали. Если мы составим список всех измерений, которые проводим в течение дня, то удивимся тому, каким длинным он будет. За свою историю человечество выработало различные методы измерений. С их помощью мы смогли определить размеры нашей планеты, протяженность межзвездного пространства и даже измерить время. В этой книге пойдет речь о математических методах, на которых строятся астрономические, геодезические, календарные и метрологические измерения.

Том 38. Измерение мира. Календари, меры длины и математика читать онлайн бесплатно

Том 38. Измерение мира. Календари, меры длины и математика - читать книгу онлайн бесплатно, автор Иоланда Гевара

Широта точки на поверхности Земли — это угловое расстояние между экватором и этой точкой, измеренное из центра нашей планеты вдоль меридиана, проходящего через эту точку. Широта измеряется в градусах, минутах и секундах и находится на интервале от 0° до 90°. Кроме того, указывается, в каком полушарии, Северном или Южном, находится точка, к примеру 41°24′14″ северной широты (с.ш.). Следовательно, все точки, расположенные на одной параллели Земли (окружности круга, параллельного экватору), имеют одинаковую широту.

Широту можно вычислить астрономическими методами. Простейший метод для Северного полушария состоял в том, чтобы найти на небе Полярную звезду (Северный полюс мира) и измерить угол между визирной линией и горизонтальной плоскостью, на которой находится наблюдатель. Полученный угол и будет искомой широтой. В Южном полушарии следует действовать аналогичным образом, выбрав для наблюдений Южный крест. Существуют и другие методы определения широты днем — к примеру, можно измерить высоту Солнца над горизонтом в полдень и применить таблицы, где указано положение Солнца относительно эклиптики в день наблюдений.



Широта и долгота точки Р на сфере.


Долгота — это значение угла между нулевым меридианом (точнее, полумеридианом), выбранным в качестве начала отсчета (0°), и меридианом, проходящим через данную точку. Этот угол измеряется из центра Земли вдоль экватора. Значения долготы лежат на интервале от 0° до 180°. Кроме того, указывается, в каком направлении от нулевого меридиана была измерена долгота — к востоку или к западу, например, 2°14′50″ западной долготы (з.д.). Следовательно, все точки, расположенные на одном полумеридиане между двумя полюсами Земли, имеют одинаковую долготу.



Широта и долгота отсчитываются от экватора и меридиана, выбранного в качестве начала отсчета (такой меридиан называется нулевым, его долгота равна 0°).


Сегодня нулевым меридианом обычно считается Гринвичский, но до него в качестве нулевых использовались многие другие меридианы.

Как мы уже говорили, определить широту корабля в море несложно. Также относительно просто узнать долготу корабля, если с него видна земля. Но если он находится в открытом море, то определение долготы связано с серьезными трудностями.

Эта задача обрела огромное значение после открытия Америки Христофором Колумбом. В то время долгота вычислялась приближенно, на основе расстояния, пройденного кораблем с запада на восток или наоборот. Чтобы определить скорость корабля, моряки использовали лаг, который представлял собой свободно вращающуюся катушку с намотанной на нее веревкой. На веревке через равные промежутки были завязаны узлы, а на ее конце закреплялся груз. Моряк выбрасывал лаг за корму, и когда о его руку ударялся первый узел, он давал команду, и другой моряк начинал отсчет времени при помощи песочных часов. Когда весь песок пересыпался из верхнего сосуда часов в нижний, второй моряк сообщал об этом первому, и тот указывал число ушедших за борт узлов, например, «три с половиной узла» или «шесть узлов с четвертью». Скорость судов до сих пор измеряется в узлах.

Разумеется, столь примитивный метод определения долготы сопровождался значительными ошибками, которые приводили к катастрофическим последствиям. Поэтому в XVII — начале XVIII века задача определения долготы стала стратегическим приоритетом для всех держав, имевших интересы за океаном.

Теоретически вычисление долготы можно свести к определению разницы во времени между точкой отсчета (портом отплытия или нулевым меридианом) и точкой, в которой находится корабль. Когда солнце проходит через меридиан наблюдателя (то есть меридиан корабля), то, зная точное время в точке отсчета, можно определить долготу корабля, то есть угловое расстояние до точки отсчета, а следовательно, и до нулевого меридиана. Этот метод действует благодаря тому, что разницу во времени между двумя меридианами можно пересчитать в градусы долготы. Так как Земля совершает полный оборот в 360° за 24 часа, за 1 час она поворачивается на 1/24 оборота, то есть на 13°. Если за час, то есть за 60 минут, Земля поворачивается на 13°, то разница в 4 минуты соответствует одному градусу долготы.

Следовательно, долготу можно вычислить, определив разницу во времени между двумя точками при помощи наблюдений и астрономических измерений. Была высказана идея об определении долготы по результатам наблюдений затмений, но этот метод не слишком пригоден в открытом море, да и затмения наблюдались редко.

* * *

НАБЛЮДЕНИЕ ЗАТМЕНИЙ ДЛЯ ВЫЧИСЛЕНИЯ ДОЛГОТЫ

Допустим, что нам известно, в какое время затмение будет наблюдаться в определенном месте (на суше, в обсерватории и так далее), при этом мы находимся в открытом море. Если мы определим, когда наблюдалось затмение по местному времени, то сможем вычислить долготу места, в котором находимся. Для использования этого метода нам потребуются таблицы, где указано, в какое время произойдет затмение в определенной точке (разумеется, мы не сможем обойтись без математических расчетов). В XVI веке определять долготу по наблюдениям затмений было удобно на суше, но не в открытом море — зафиксировать измерительные приборы из-за качки было очень сложно, а главное, что затмения наблюдались редко: в год происходит от двух до пяти солнечных затмений. Если же учитывать и лунные, то в год набирается не менее двух и не более семи затмений, в среднем — четыре. За весь XX век наблюдалось 375 затмений: 228 солнечных и 147 лунных. И без того редкие затмения еще и не всегда видны: наблюдениям могут помешать неблагоприятные погодные условия.

* * *

С недостаточной частотой затмений удалось справиться благодаря открытию Галилеем спутников Юпитера в 1610 году. Луны Юпитера при вращении вокруг него скрываются из вида и появляются вновь. Эти затмения наблюдаются несколько тысяч раз в год, и их время можно точно предсказать. Этот метод действительно можно было бы применять для определения долготы, но в открытом море мешала качка, а также наблюдения можно было производить только ночью, в ясную погоду и лишь в определенное время года.

Задача определения долготы в открытом море довольно долго оставалась нерешенной. Определить местное время на корабле можно было по Солнцу. Но как узнать время в точке отсчета, не располагая достаточно точными часами? Точность хода маятниковых часов снижалась, среди прочих факторов, и из-за качки корабля, кроме того, период колебаний маятника на разных широтах отличался, и в результате часы спешили или опаздывали. Корабельные часы не могли сохранять время в порту отплытия, это было причиной существенных ошибок при определении долготы.

В 1714 году Британский парламент предложил огромную премию размером в 20 тысяч фунтов стерлингов тому, кто сможет представить метод или инструмент, позволяющий определять долготу корабля в открытом море. Премия досталась английскому часовщику Джону Гаррисону (1693–1776), который после нескольких десятилетий работы смог изготовить очень точный хронометр. В 1761 году для проверки хронометр был погружен на корабль, направлявшийся на Ямайку. Хронометр проработал 147 дней, и по возвращении в Англию отклонение составило всего 1 минуту 34 секунды. Задача определения долготы была решена. Сегодня определить точное положение корабля можно благодаря системе GPS, о которой мы поговорим в главе 6.


Несферическая Земля. Научные экспедиции в вице-королевство Перу и Лапландию

При измерениях Земли, в том числе при измерениях Пикара, считалось, что она имеет форму идеальной сферы. Спустя несколько лет после опыта Пикара, в 1671–1673 годах, французский астроном Жан Рише (1630–1696), ассистент Джованни Доменико Кассини, совершил путешествие в Кайенну во Французской Гвиане, где сделал важное открытие: он обратил внимание, что в Кайенне колебания маятника были медленнее, чем в Париже, и первым понял, что сила тяготения Земли в разных ее частях отличается. Он сделал верный вывод: изменение силы тяготения объяснялось тем, что Кайенна находилась дальше от центра Земли, чем Париж. Когда новость об открытии достигла Европы, она вызвала большое оживление среди членов Французской академии наук. По возвращении на родину Рише приступил к изготовлению маятника, который отсчитывал бы секунды — иными словами, период колебаний маятника в Париже должен был составлять ровно одну секунду. Такие же маятники были изготовлены и в других частях земли, и оказалось, что длина маятника в зависимости от широты менялась. Согласно известным в то время теориям все указывало на то, что если сила, с которой Земля притягивает к себе маятник, в разных точках отличается, то Земля не может иметь форму идеальной сферы.


Иоланда Гевара читать все книги автора по порядку

Иоланда Гевара - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Том 38. Измерение мира. Календари, меры длины и математика отзывы

Отзывы читателей о книге Том 38. Измерение мира. Календари, меры длины и математика, автор: Иоланда Гевара. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.