∂ Ψ i ALPHA(x) ∂ Ψ(x) —--- — > e|||||||||| [------ + ∂ x ∂ x
∂ ALPHA (x) + Ψ (x) —------] (50)
∂ x
и, следовательно, неинвариантна относительно локальных калибровочных преобразований.
Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов
A|'(x) — > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю
с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).
С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.
Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.
Сделаем в заключение три важных замечания.
1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.
2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.
3. Таким образом, можно установить эквивалентность следующих утверждений:
уравнения движения (поля) — калибровочно инвариантны,
заряд в замкнутой системе сохраняется,
силы в статическом случае дальнодействующие,
масса частицы переносчика взаимодействия m|||||=0.
GAMMA
Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.[11]
8. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ
Рассмотрим пример: систему невзаимодействующих частиц, движущихся по классическим траекториям. Каждой частице в момент времени t соответствуют свои координаты и проекции импульса. Таким образом, каждой точке видимого пространства соответствует значение вектора импульса. Можно рассматривать движение системы частиц в этом пространстве, не придавая совокупности импульсов никакого геометрического смысла. Кроме того, можно полагать, что вся совокупность координат играет роль базы, а векторы импульсов — слоев. При отсутствии взаимодействия подобное расслоенное пространство тривиально, а использование в данном случае образа расслоенного пространства и его несколько непривычных для физиков понятий — ненужное усложнение. Разумнее рассматривать изолированно два пространства: конфигурационное (координаты) и импульсное.
Однако ситуация меняется, если пытаться интерпретировать внутренние квантовые числа элементарных частиц. Здесь мы остановимся на геометрической интерпретации спина, изотопического спина и цвета (об этих квантовых числах см. Дополнение).
Введем вектор, характеризующий состояние системы, которую для определенности мы будем отождествлять с частицей. В первом приближении под состоянием следует понимать значения ее координат и вектора импульса.
Однако если пытаться включить в понятие состояния значения внутренних квантовых чисел, то элементарная (привычная) наглядность состояния частицы утрачивается. Если понятие спина частицы можно отождествить с вращением вектора состояния в обычном конфигуральном пространстве (например, пространстве Минковского), то уже при попытке наглядно геометрически интерпретировать изотопический спин возникают определенные трудности. Формализмы обычного и изотопического спинов тождественны. Они соответствуют вращениям вектора состояния в трехмерном пространстве`. В интерпретации спина проблем нет. Это наше привычное евклидово пространство. Однако в каком пространстве вращается вектор изотопического спина? Со времен введения понятия изотопического спина (Гейзенберг, 1932) произносили слова, похожие на заклинание: вектор изотопического спина вращается в воображаемом «зарядовом» пространстве.[12]
Однако, используя язык расслоенных пространств, этому заклинанию можно придать некоторый физико-геометрический смысл. Допустим, что изотопическое пространство является слоем над базой — пространством Евклида (Минковского). Иначе говоря, мы представляем реальное физическое пространство как расслоенное пространство с базой — видимым пространством и слоем — изотопическим (зарядовым) пространством. Нам нужно, чтобы свойства этого слоя удовлетворяли двум условиям: 1) слой должен быть трехмерной сферой (аналог пространства, в котором вращается вектор обычного спина), 2) размеры этой сферы должны быть очень малы, во всяком случае, много меньше расстояний 10**-16 см, хорошо изученных на опыте. Если бы радиус слоя превышал 10**-16 см, то слой изотопическое пространство — проявлялся бы на экспериментах, в основе которых лежат представления о реальном физическом пространстве. Этот эффект, например, проявлялся бы в отклонении наблюдаемого сечения рассеяния позитронов на электронах от вычисленного значения сечения. Поскольку такое отклонение отсутствует, то следует сделать вывод, что если изотопическое пространство и реально, то его размеры (размеры слоя) весьма малы. В дальнейшем, в гл.3, мы оценим эти размеры.
Исключительная малость размеров изотопического пространство делает в известном смысле иллюзорной попытку провести грань между словами «реальное» и «воображаемое» пространство. На опыте это пространство ненаблюдаемо, а слова: «изотопическое пространство есть слой над базой видимое пространство» — имеют в значительной степени филологические смысл.
≡=РИС. 5
Подобная квалификация кажется тем более оправданной, поскольку простая геометризация изотопического спина никак не увязывается с взаимодействием частиц. Чтобы реализовать связи в треугольнике геометрия — изотопический спин взаимодействие, нужна руководящая идея. Пока мы ограничимся постулированием такой идеи, а в гл.3 подробно изложим аргументы в ее пользу.
В настоящее время представляется, что основой сформулированного выше «треугольника» является калибровочная инвариантность. В качестве предварительного оправдания подобного постулата можно привести довод: калибровочная симметрия (правда, в различных модификациях) лежит в основе четырех известных взаимодействий.
Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис. 5). К каждой точке прямой «прикреплена» сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.
9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ
Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:
1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения).
2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.
3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью.
4. В основе взаимодействия лежит калибровочная инвариантность.
Эти положения носят программный характер. Дальнейшее представляет их конкретную реализацию. Для простоты ограничимся вначале электродинамикой. Как упоминалось ранее, уравнения электродинамики однозначно определяются характеристиками фотона — частицы, переносящей электромагнитное взаимодействие. Масса и изотопический спин фотона равны нулю. Это обстоятельство приводит к фазовой инвариантности функции состояния
i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ(x) и калибровочной инвариантности потенциалов A'(x) — > A(x) + ∂ f (x) / ∂ x. Важно, что в формуле для преобразования функция ALPHA(x) простое (хотя, возможно, и комплексное) число, а не матрица. Это свойство определяется нулевым значением изотопического спина фотона. Если бы изотопический спин частицы-переносчика был отличен от нуля, то коэффициент ALPHA представлялся бы матрицей, что кардинально изменяло бы ситуацию. Этот случай будет рассмотрен далее.