* * *
Существуют различные типы данных и способы представления знаний, а также наборы процессов для получения оптимальных результатов. Основные процессы искусственного интеллекта включают контроль систем, автоматическое планирование, способность реагировать на тесты и запросы пользователей, распознавание речи, почерка и образов. Все это достигается с помощью различных математических инструментов: моделирования, интерпретации образов, статистики, геометрии, обработки изображений, графики и так далее.
Пионером новой науки стал британский ученый-информатик Алан Тьюринг (1912–1954), который в 1930 г. писал:
«Искусственный интеллект будет достигнут тогда, когда мы не сможем провести различие между человеком и компьютерной программой, ведя с ними разговор с завязанными глазами».
Тьюринг был математиком, программистом, криптографом и философом. Он считается отцом современной кибернетики и известен тем, что работал во время германских бомбежек Великобритании. Во время Второй мировой войны он был директором отдела расшифровки в Блетчли-парке, который занимался исследованием и расшифровкой сообщений противника, закодированных немецкой шифровальной машиной «Энигма».
Его теоретические работы заключались в формализации понятия алгоритма и вычислений, что теперь называется «машиной Тьюринга». Однако он также работал в практической области, помогая в разработке одной из первых программируемых электронно-вычислительных машин. Результаты его работы стали важным аргументом в дискуссии о том, может ли машина — или сможет ли когда-либо — думать.
Вычислительная геометрия играет важную роль в таком разделе теории искусственного интеллекта, как искусственное зрение, компьютерное зрение и техническое зрение. Искусственное зрение означает возможность запрограммировать компьютер так, чтобы он мог визуально распознавать различные элементы изображения.
В промышленных процессах, когда продукция многократно производится из одинаковых компонентов, искусственное зрение означает, что тысячи производимых деталей могут быть проверены за одну секунду с высокой эффективностью обнаружения дефектов. Надо сказать, что такие системы не могут функционировать без человека, они являются лишь дополнением к нашим органам чувств.
* * *
РОБОТ-ХУДОЖНИК
В 2007 г. швейцарский исследователь-робототехник Сильвен Калинон из лаборатории изучения систем и алгоритмов (Learning Algorithms and Systems Laboratory — LASA) построил робота, способного нарисовать портрет сидящего перед ним человека, используя механическую руку и гусиное перо, периодически опускаемое в чернила. Целью проекта была разработка приложений, таких как автоматизированное создание фотороботов подозреваемых в совершении преступлений и распознавание форм и фигур в трехмерном пространстве.
Этот проект не так уж сложен, как может показаться. Робот фиксирует изображение человека и отделяет его от окружающего фона. Для этого робот использует алгоритмы распознавания образов и различия в освещении и позе модели. Затем блок управления робота преобразует фотографию в векторный рисунок, как и любая другая программа по обработке изображений. Получив четкое изображение модели, робот приступает к рисованию, но вместо принтера у него имеется «рука» с четырьмя степенями свободы, которая позволяет держать перо и рисовать на бумаге наподобие картографа.
* * *
Магнитный резонанс
Хотя, казалось бы, вычислительная геометрия существует в абстрактном мире, она помогает нам самым реальным способом: в диагностике заболеваний. Она лежит в основе устройств, которые используют так называемый магнитный резонанс. Он применяется для очень точного определения расположения атомов в человеческом теле. Оборудование для обработки изображений, используемое в такой диагностической работе, очень сложное не только потому, что является высокочувствительным, но и потому, что оно ни в коем случае не должно наносить вред пациенту.
* * *
МАТЕМАТИКА ДЕЛАЕТ МИР ЛУЧШЕ
Швейцарский физик Феликс Блох и американский физик Эдвард Пёрселл открыли магнитный резонанс в 1946 г. В 1952 г. они оба получили Нобелевскую премию по физике за развитие новых способов точного измерения ядерных магнитных эффектов. На следующем рисунке показано, как просто и компактно выглядит магнитно-резонансный томограф. В основе его работы лежит сложная высшая математика, но томографы быстро стали привычным медицинским диагностическим оборудованием. Процесс, при котором математические теории получают техническое применение в нашей повседневной жизни, все более ускоряется.
* * *
Основным компонентом устройства является магнит, который генерирует сильное магнитное поле. Его силовые линии ориентируют атомные ядра в двух направлениях: параллельно вектору силового поля и антипараллельно, в противоположном направлении. Интенсивность магнитного поля определяет частоту, с которой резонирует каждый атом. Электромагнитное излучение определенной частоты, обычно радиоволны, пропускается через человека. Тогда излучение, которое высвобождается в результате переориентации атомов, фиксируется сканером томографа.
Поскольку магнит создает постоянное поле, все ядра одного и того же вещества резонируют с одной и той же частотой, поэтому зоны, содержащие различные вещества, будут излучать или больше, или меньше электромагнитных отголосков. Вся эта информация, которую несут электромагнитные сигналы, поступающие от пациента, обрабатывается количественно с помощью математического аппарата, называемого преобразованием Фурье.
Магнитный резонанс сначала применялся для томографии, другими словами, чтобы получать изображения срезов человеческого тела. Каждый срез имеет определенную толщину и состоит из элементов объемного изображения, называемых вокселями. Это слово образовано из слов «объемный» (англ, volumetric) и «пиксель» (англ, pixel). Воксель является элементом трехмерного изображения. Его более известный аналог — пиксель — является элементом двумерного изображения.
Для создания трехмерного изображения необходимо изменить непрозрачность вокселей. Каждый воксель получает различные значения непрозрачности в зависимости от того, сколько в данной области срезонировало элементов, что определяется количественно. Именно благодаря этому эффекту врачи могут наблюдать внутренние органы человека, которые иначе были бы невидимы за более непрозрачными внешними слоями. Объем вокселя составляет около трех кубических миллиметров. Каждый срез состоит из большого количества вокселей.
* * *
ПРЕОБРАЗОВАНИЕ ФУРЬЕ
Преобразование Фурье изучается в разделе математики, называемом гармоническим анализом. Этот математический оператор используется, чтобы разложить сигнал на составляющие разной частоты. Математически это очень сложно. Этот оператор задается для функций f и g комплексного переменного следующим образом:
* * *
Магнитный резонанс позволяет изображать срезы внутренних органов. Изображение слева — горизонтальный срез головного мозга в месте, указанном стрелкой на фотографии справа.
И наконец, изображение представляется в виде точек, яркость которых пропорциональна силе магнитно-резонансного сигнала в соответствии с содержанием вокселей в изучаемом объекте. Эта информация отображается и распечатывается в виде изображения с числовыми значениями, так что медицинские специалисты могут визуально интерпретировать его и точно диагностировать состояние пациента.
Цифровые изображения
Отправка и получение фотографий по электронной почте, фотографирование цифровой камерой, сканирование изображений — все это теперь часть нашей повседневной жизни. Благодаря многочисленным программам для обработки изображений и плоским экранам во всех языках появились новые регулярно и повсеместно используемые слова. Например, пиксель, уже упомянутый выше, а также растровые и векторные изображения с поразительной легкостью из специализированных терминов стали общеупотребительными словами.
Как и новые термины, приходящие из других языков, понятие «растровое изображение» может принимать различные обличья: битовая матрица, матричное изображение или пиксельное изображение. Это файл, представленный в виде матрицы, таблицы пикселей или цветных точек, называемый растром, который можно просматривать на экране компьютера или в распечатанном виде. Слово растр происходит от латинского rastrum, означающего «грабли», и radere — «скрести».