My-library.info
Все категории

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Том 26. Мечта об идеальной карте. Картография и математика
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
252
Читать онлайн
Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика краткое содержание

Рауль Ибаньес - Том 26. Мечта об идеальной карте. Картография и математика - описание и краткое содержание, автор Рауль Ибаньес, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Современный человек пользуется картами практически ежедневно: карты украшают стены школ, они помогают нам ориентироваться на местности, находить кратчайший путь из одного пункта в другой, изучать историю, географию, экономику и ряд других наук.Карты — важный рабочий инструмент для некоторых специалистов: моряков, летчиков, машинистов, топографов и проч. Но много ли мы знаем о том, как создаются карты? Для чего существует такое количество разнообразных карт и насколько все они точны?Прочитав эту книгу, вы узнаете множество новых и любопытных фактов о геометрии карт.

Том 26. Мечта об идеальной карте. Картография и математика читать онлайн бесплатно

Том 26. Мечта об идеальной карте. Картография и математика - читать книгу онлайн бесплатно, автор Рауль Ибаньес

В конических проекциях сетка меридианов и параллелей имеет характерную форму. Примером конической проекции является равновеликая коническая проекция Альберса (1805).


Искажения, вносимые коническими проекциями, вблизи стандартной параллели (или параллелей) невелики и возрастают по мере приближения к полюсам. В силу этого конические проекции обычно используются для карт стран, регионов и территорий с умеренным климатом, в то время как азимутальные и цилиндрические проекции, как правило, применяются при построении карт полярных и экваториальных территорий соответственно. Так, конические проекции подходят для изображения участков земли, заключенных между двумя не слишком удаленными друг от друга меридианами: например для карт Испании, Франции, Монголии или Аляски. В этой же проекции можно составлять карты более широких областей, простирающихся в направлении с востока на запад, например карты России, Европы или США.

Кроме стандартных, или полярных, конических проекций, также существуют экваториальные и косые конические проекции. Если не соблюдать условия построения конических проекций, мы получим так называемые псевдоконические (на них меридианы изображаются кривыми) и поликонические (где параллели не являются концентрическими окружностями) проекции.



Карта полуострова Флорида, выполненная в равновеликой конической проекции Альберса.


Птолемей создал две конические проекции (хотя в их описании он ни разу не упоминает конус), на которых параллели изображались дугами концентрических окружностей. В первой проекции меридианы изображались прямыми линиями (см. иллюстрацию на стр. 126), во второй — дугами окружности (стр. 12). Труды Птолемея оказали большое влияние на картографию Возрождения: в частности, с начала XVI века конические и псевдоконические проекции постепенно начали изучать и использовать видные картографы: Герард и Румольд Меркаторы, Виллем Блау, Иодокус Хондиус, Гийом Делиль, Джон Спид и другие. Некоторые из этих проекций имели очень любопытную форму, например, Иоганнес Вернер или французский картограф Ригобер Бонне (1727–1795) создали проекции в форме сердца, а французский математик и картограф Оронций Финеус (1494–1555) — проекции в форме двойного сердца.



Вверху — карта мира, составленная Птолемеем в конической проекции. Внизу — карта, созданная на основе проекции в форме двойного сердца, разработанной Оронцием Финеусом (1538).


Равноугольная коническая проекция Ламберта

Цилиндр и плоскость можно рассматривать как предельные случаи конуса: чтобы получить цилиндр, необходимо удалить вершину конуса на бесконечно большое расстояние, а плоскость образуется, если вершина конуса принадлежит его основанию. Ламберт использовал все доступные ему математические инструменты (математический анализ, геометрию, алгебру и тригонометрию) для создания семейства конформных конических проекций с двумя стандартными параллелями. Предельными случаями этих проекций являются стереографическая проекция (азимутальная) и проекция Меркатора (цилиндрическая).

Затем эта проекция была забыта, и о ней вновь вспомнили во Франции во время Первой мировой войны. Позднее равноугольная коническая проекция Ламберта стала одной из самых популярных для составления карт большого масштаба, уступая лишь проекции Меркатора. Ее используют Геологическая служба США и многие международные агентства, а Европейская комиссия рекомендует применять эту проекцию для составления конформных карт Европы в масштабах, меньших или равных 1:500000. Часто она используется и при составлении навигационных карт.



Политическая карта Европы, выполненная в равноугольной конической проекции Ламберта.


Перечислим некоторые другие конические проекции. Во-первых, это косая биполярная проекция, предложенная в 1941 году Осборном Миллером и Уильямом Бризмейстером из Национального географического общества для создания карты всего Американского континента. В этой проекции, которая широко используется до сих пор, были применены две разновидности косой равноугольной конической проекции Ламберта. Во-вторых, это равновеликая коническая проекция Альберса, созданная немецким картографом Хейнрихом Альберсом в 1805 году, а также коническая равнопромежуточная проекция, напоминающая ту, что используется в карте Птолемея, и поликоническая проекция, авторство которой обычно приписывают швейцарскому топографу Фердинанду Хасслеру (1770–1843). В поликонической проекции используются различные конусы, а карта в этой проекции внешне схожа с нефроидой — кривой, по форме напоминающей почку.



Карта Америки, выполненная в биполярной косой проекции.

Глава 8

Что Эйлер сказал картографу

— Вот еще одна вещь, которую мы переняли у вашего народа, — сказал Майн Герр, — создание карт. Но мы пошли в этом деле гораздо дальше вас. Каков, по-вашему, должен быть наибольший масштаб, чтобы карта стала по-настоящему полезной?

— Примерно шесть дюймов на милю.

— Только шесть дюймов! — воскликнул Майн Герр. — Мы довольно быстро дошли до шести ярдов на милю. Затем мы попробовали сделать карту в сто ярдов на милю. А затем нам пришла в голову самая грандиозная идея! Мы создали такую карту нашей страны, масштаб которой равняется миля на милю!

— И часто вы ею пользуетесь? — спросил я.

— Ее еще ни разу не расстилали, — сказал Майн Герр. — Крестьяне были недовольны. Они сказали, что если такую карту расстелить на всю страну, она скроет солнечный свет! Так что пока мы используем саму страну как ее карту, и, смело могу вас заверить, действует она преотлично.

Льюис Кэрролл «Сильвия и Бруно», часть вторая (1893)


Мы вкратце рассмотрели равновеликую цилиндрическую проекцию Ламберта, центральную и стереографическую проекцию — три важные картографические проекции, которые помогли нам лучше понять некоторые аспекты картографии. Однако вернемся к главному вопросу этой книги: существуют ли правильные карты земной поверхности? Как построить правильную карту?

Чтобы не потерять нить рассуждений, напомним, что идеальная карта должна сохранять неизменными (за исключением масштаба) такие метрические свойства, как площади, углы, геодезические линии, формы и в целом длины кривых и расстояния. Иными словами, искомая картографическая проекция должна быть изометрической. Чтобы упростить поиски точной карты Земли, мы задались вопросом: достаточно ли свойства сохранения площадей для того, чтобы равновеликая проекция была изометрической? Положительный ответ значительно упростил бы задачу: мы смогли бы ограничиться рассмотрением только тех проекций, которые сохраняют площади.

Однако после изучения трех проекций стало понятно: чтобы проекция была изометрической и подходила для составления идеальной карты, сохранения только одного из метрических свойств (площадей, углов или формы геодезических линий) недостаточно.


Равноугольные равновеликие проекции

Итак, наша первая попытка построить идеальную карту завершилась неудачей. Тогда рассмотрим следующий вопрос: достаточно ли сохранения двух из трех метрических свойств, чтобы проекция была изометрической?

Начнем с того, что рассмотрим проекцию сферы на плоскость, сохраняющую углы и площади, и попытаемся определить, будет ли эта проекция изометрической. Для этого используем результаты, изложенные в предыдущих главах. В них мы рассмотрели искажения, вносимые проекциями, которые оставляют площади и величины углов неизменными. Как вы знаете из главы 5, если проекция является конформной (равноугольной), искажения в направлении меридианов μ равны искажению в направлении параллелей λ:

μ = λ

С другой стороны, в этой же главе мы показали, что для равновеликих проекций величина искажения вдоль меридианов обратна величине искажения вдоль параллелей, что обеспечивает сохранение площадей:

μ = 1/λ

С учетом обоих равенств имеем:

μ = λ = 1

Иными словами, если проекция будет одновременно равновеликой и конформной, в ней не будет наблюдаться никаких искажений: ни вдоль меридианов, ни вдоль параллелей, ни в каком-либо другом направлении. Следовательно, эта проекция будет изометрической. Читатель может спросить: как быть с масштабом? Напомним, что мы рассматриваем сферическую модель Земли, следовательно, линейное изменение размеров никак не влияет на решение задачи.


Рауль Ибаньес читать все книги автора по порядку

Рауль Ибаньес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Том 26. Мечта об идеальной карте. Картография и математика отзывы

Отзывы читателей о книге Том 26. Мечта об идеальной карте. Картография и математика, автор: Рауль Ибаньес. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.