b r|| ~ t|. (61) AB
Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t|, отсчитываемого от
k начала расширения).
Теперь рассмотрим второй случай, когда H(t)=const. Он также соответствует двум различным физическим картинам.
1. H ≠ 0. Тогда решение уравнения (60) имеет вид
Ht r|| ~ e||. (62) AB
Расстояние между двумя точками очень быстро (экспоненциально) увеличивается с ростом времени. Можно показать, что в этом случае плотность материи остается неизменной: ρ = const (t).
Зависимость (62) была получена на заре космологии де Ситтером`, но была отвергнута научной общественностью именно из-за странной зависимости ρ(t). Было неясно, каким образом быстрое изменение объема системы не приводит к изменению плотности. Для всех известных тогда форм материи (вещество, излучение) оба основных вывода, следующих из модели де Ситтера, противоречили друг другу. Лишь сравнительно недавно выяснилось, что существует третья форма материи — физический вакуум, который удовлетворяет обоим выводам, следующим из стационарной (ρ=const) модели де Ситтера.[17]
2. Наконец, остается последний случай H=0. Этот случай соответствует равенству r|| = const(t). Все взаимные расстояния (также как и другие физические характеристики) не изменяются со временем. Метагалактика полностью статична, что соответствует космологической модели Эйнштейна.
ТАким образом, мы привели аргументы (которые при более детальном анализе можно сделать более строгими) в пользу того, что космологические постулаты о геометрии Метагалактики (Вселенной) в значительной степени определяют динамику ее эволюции.
4. ПРОБЛЕМЫ ФРИДМАНОВСКОЙ КОСМОЛОГИИ
Фридмановская космология согласуется со всеми наблюдательными данными. Однако при анализе замкнутости, самосогласованности фридмановской модели возникают многие проблемы, на которые предпочитали не обращать внимания, концентрируя акценты на ее достижениях.
Здесь мы остановимся на двух (из многих) проблемах, которые нам представляются наиболее существенными.
С_и_н_г_у_л_я_р_н_о_с_т_ь. Решение (61), которое соответствует модели Фридмана, приводит к заключению, что при t|=0 радиус Метагалактики был равен нулю, и,
u следовательно, плотность ρ вещества в этот момент равнялась бесконечности. Такая ситуация называется сингулярностью. Этот результат противоречит всему физическому опыту. При решениях многих физических задач в решениях возникают бесконечности, однако оказывается, что в уравнениях, описывающих данное явление, допущена идеализация. При увеличении одного (или нескольких) параметров возникают новые процессы, которые препятствуют возникновению бесконечности. Типичное проявление подобного феномена кулоновское взаимодействие на малых расстояниях. Прямолинейное использование формулы F = e**2 / r**2 для описания взаимодействия двух электронов с зарядом e приводит к ошибочным результатам при расстояниях между электронами меньше 10**-11 см. В случае r < 10**-11 см начинают играть роль квантовые поправки, которые требуют применения квантовой электродинамики. Однако, как теоретически показали Л.Д.Ландау, И.Я.Померанчук и Е.С.Фрадкин, при r ~< 10**-32 10**-33 см квантовая электродинамика становится также неприменимой. По всеобщему убеждению, при столь малых расстояниях нужно учитывать все взаимодействия, в том числе и гравитационное, что должно привести к ликвидации сингулярности в рамках квантовой интерпретации закона Кулона при r — > 0. В соответствии с приведенными соображениями нельзя использовать закон Кулона при r — > 0.
Проблема сингулярности не нова. Еще А.Эйнштейн сомневался в применимости классической (неквантовой) теории — ОТО при очень больших плотностях. Однако он не мог предложить количественных оценок для пределов применимости ОТо. Строго говоря, и сейчас нет их точного определения. Однако, по всеобщему убеждению, ОТО неверна при приближении к планковским величинам: длина l| ~ (HP * G / c**3)**(1/2) ~
p 10**-33 см, время t| ~ (HP * G / c**5)**(1/2) ~ 10**-43 с и
p плотность ρ| ~ c**5 / HP * G**2 ~ 10**94 г/см**3.
p Последняя величина чудовищно велика: масса метагалактики равна «только» 10**55 г. Подчеркнем, однако, что нарушение ОТО при планковских величинах полагают обязательным. Происходит ли оно существенно ранее — неизвестно, поскольку экспериментальные данные весьма далеки от планковских величин. Напомним еще раз, что наименьшие измеренные расстояния r ≈ 10**-16 см.
Избавиться от сингулярности путем прямолинейного отказа от основных космологических постулатов невозможно. Как показали английские физики Р.Пенроуз и С.Хокинг, при весьма общем и естественном условии — выполнении энергодоминантности ε+p>0 (ε — плотность энергии, p давление) сингулярность в рамках ОТО неизбежна.
П_р_о_б_л_е_м_а г_о_р_и_з_о_н_т_а. В соответствии с теорией относительности информация от одного объекта к другому распространяется со скоростью v ≤ c. Следовательно, если в некоторый момент времени t=0 два объекта располагались в одной точке, то через некоторое время t=t| они будут причинно связаны лишь при условии, если
1 расстояние r между ними удовлетворяет условию r ≤ ct|.
1 Пусть величина t| = t| (t| — время существования
1 u u Метагалактики), тогда расстояние R=ct| есть максимальное
u расстояние, причинно связывающее две произвольные точки в метагалактике, например Землю и некоторую галактику. Расстояние R=ct| называется горизонтом. Если подставить в
u выражение для R значение t| ≈ 3*10**17 с, вычисленное в
u соответствии с моделью Фридмана или по времени существования старых звезд, то легко получить, что R ≈ 10**28 см, что совпадает с наблюдаемой областью Вселенной — Метагалактикой.
Расширение реализуется медленно. В формуле (61), определяющей зависимость размеров R Метагалактики от времени, b<1, и, следовательно, расширение происходит медленнее, чем увеличение размеров горизонта. Поэтому если сейчас обе величины совпадают, то это означает, что ранее Метагалактика была разбита на множество причинно не связанных областей. Этот факт превращается в серьезную проблему, если его сопоставить с поразительной изотропией Метагалактики. Как различные части Метагалактики, причинно не связанные между собой, могли подстроиться друг к другу так, чтобы возникла совершенная изотропная (сферическая или квазисферическая) геометрия?
Этот вопрос и составляет проблему горизонта.
Общепризнанно, что физическая терминология достаточно несовершенна. Вероятно, есть две основные причины, порождающие недоразумения.
Во-первых, историческая: когда явление только начинает изучаться и возникает его название, отражающее лишь малую часть его истинной сущности. Затем термин прочно входит в быт физики, после чего выясняется, что суть явления совсем иная, чем это полагалось вначале. Типичным примером подобного недоразумения является введенный Г.Вейлем термин «калибровочная инвариантность», отражавший первоначальное представление его автора об электродинамике как явлении, которое остается неизменным при изменении пространственно-временных масштабов.
Другой общей причиной несовершенства терминологии является принципиальная неадекватность слов (терминов) и глубинной сути явлений. Здесь вполне уместно напомнить знаменитый афоризм Тютчева: «Мысль изреченная есть ложь».
Термин «физический вакуум» несовершенен по обеим причинам. Прежде всего, еще из школьной физики мы помним, что он используется для определения весьма разреженных газов. Кроме того, с середины 20-х годов и особенно после замечательной работы П.Дирака, предсказавшего в 1928 г. существование позитрона, термин «физический вакуум» завоевывает узаконенной положение в совершенно иной области — в квантовой теории поля. В первоначальной трактовке Дирака физический вакуум — система частиц, в которой отсутствуют позитроны. В рамках квантовой электродинамики это означает, что система электронов и фотонов включает также и физический вакуум. В трактовке Дирака, которая, на наш взгляд, сохранила свое значение в рамках электродинамики и до сих пор, физический вакуум — это бесконечная совокупность электронов с отрицательной энергией. Такая система обладает бесконечной энергией, и ее непосредственно никто не наблюдал. Однако это свойство Дирак возвел в ранг постулата. В соответствии с такой картиной Дирак предсказал существование позитрона — «дырки» в физическом вакууме. Эта картина казалась настолько фантастичной, что до 1032 г., когда был открыт позитрон, картину, нарисованную Дираком, большинство физиков полагали курьезным заблуждением. Ситуация в общественном мнении полностью изменилась после открытия позитрона. Физический вакуум сделался хотя и не наблюдаемой, но физической реальностью. Однако определения или, точнее, представления о физическом вакууме модифицировались. Сохранилась идея, что вакуум — система, в которой отсутствуют реальные частицы данного сорта. Однако содержание этого понятия существенно обогатилось. Кроме электронно-позитронного вакуума, ввели представления о вакууме для других частиц. Наиболее глубокое развитие понятие вакуума получило после обобщения вакуума Дирака на любые фермионы (помимо электронов), а также и на бозоны. Сейчас подразделяют физический вакуум на бозонный и фермионный.