Составить точную карту Земли невозможно. Наиболее точное представление о нашей планете дает глобус, сохраняющий все интересующие нас метрические свойства с учетом коэффициента масштаба. Единственное искажение на глобусе — это коэффициент масштаба, неизменный во всех его точках. В этой модели мы смело можем прокладывать морские и воздушные маршруты, так как румбы и расстояния на глобусе сохраняются. Для определения расстояния между двумя точками земной поверхности, например между двумя городами, нужно построить на глобусе большой круг (это нетрудно сделать с помощью натянутой веревки), затем измерить длину веревки и, наконец, вычислить реальное расстояние с помощью коэффициента масштаба. Аналогично на глобусе можно измерить и другие величины, при этом результат будет точнее, чем при использовании плоской карты. Ошибки измерений на глобусе будут вызваны неточностями, допущенными при измерениях, а не погрешностями, внесенными при изготовлении самого глобуса (при условии, что он был построен правильно). Однако, как вы увидите далее, построить глобус сложно, и при этом все же возникают ошибки.
Современный глобус.
* * *
ИСТОРИЯ ГЛОБУСОВ
Первые глобусы создали греки, которым было известно, что Земля имеет сферическую форму. Первый глобус, о котором сохранились документальные упоминания, был сконструирован грамматиком и философом-стоиком Кратетом Малльским около 150 года до н. э. В то время Америка, Австралия и часть Африканского континента еще не были открыты, и на глобусе были изображены четыре части суши, из которых известной (ойкуменой) была всего одна. Глобусы Земли и звездного неба создавали и использовали греки, римляне и, позднее, арабы.
Первый глобус Земли, дошедший до наших дней, создал немецкий географ Мартин Бехайм в 1492 году. Эпоха Возрождения стала золотым веком в изготовлении глобусов. Немецкий картограф Мартин Вальдземюллер (ок. 1470 — ок. 1520) совершил прорыв в массовом изготовлении глобусов: он первым использовал отпечатанную развертку глобуса.
Факсимиле глобуса Вальдземюллера (1507).
Изучив глобусы, созданные в разное время, можно увидеть, как при их создании использовались все более совершенные технологии и новая географическая информация. Перелом в усовершенствовании процесса изготовления глобусов, а также в развитии научных теорий, связанных с задачей о построении точной карты, произошел благодаря фламандскому картографу Герарду Меркатору. Он стремился создать глобус, который могли бы использовать мореплаватели и студенты, изучающие навигацию, поэтому на глобусах Меркатора были изображены, в частности, локсодромы. Однако многие созданные им глобусы стали всего лишь изысканными предметами интерьера в домах знати.
КАК СКОНСТРУИРОВАТЬ ГЛОБУС?
Хотя сфера — это, по сути, единственное геометрическое тело, позволяющее точно представить земную поверхность, конструирование сферической модели Земли связано с рядом технических проблем. Первая из них — размер: глобусы слишком малы, чтобы на них можно было рассмотреть все детали. Так, если бы на поверхности глобуса был изображен рельеф земной поверхности в масштабе, то гора Эверест имела бы высоту всего 0,28 мм. Вторая проблема — выбор материала для изготовления основы глобуса. В древности глобусы были полнотелыми и изготавливались из стекла, мрамора, дерева или металлов (золота, серебра, бронзы или свинца), однако начиная с Меркатора картографы стали изготавливать полые глобусы, например из бумажно-гипсовой массы, нанесенной на деревянный каркас. Современные глобусы попрежнему полые, однако технологии их изготовления непрерывно совершенствуются. Сегодня их изготавливают из бумаги, пластика или металла.
Начиная с Вальдземюллера используются отпечатанные развертки глобусов в виде склеенных сферических двуугольников, которые затем наклеиваются на поверхность сферы. При этом возникает та же проблема, что и при составлении карт: на плоском листе бумаги нужно отпечатать изображение, которое затем будет нанесено на поверхность глобуса. Обычно развертка глобуса состоит из 12 сферических двуугольников, центры которых лежат на экваторе. Развертка выполняется в видоизмененной синусоидальной проекции. Сегодня чаще используют две развертки из 12 треугольных секторов, центры которых совпадают с одним из полюсов. Каждая развертка полностью покрывает полушарие. Современные технологии позволяют наносить сферические двуугольники сразу на материал основания глобуса.
Развертка глобуса Мартина Вальдземюллера (1507).
* * *
Глобусы широко используются в картографии, географии, мореходном деле, геодезии, океанографии, климатологии, сейсмографии и других науках. Они позволяют получить реальное представление о том, как выглядит Земля, какую форму она имеет, как ее континенты расположены относительно друг друга. Поэтому важно, чтобы во всех школах и во всех домах был хотя бы один глобус, позволяющий увидеть, как на самом деле выглядит наша планета. Кроме того, благодаря особой конструкции подставки глобуса, мы можем наблюдать за вращением Земли: та часть глобуса, которую мы видим, будет соответствовать той части планеты, где сейчас день, невидимая часть глобуса — той части, где сейчас ночь.
Хотя в теории глобус — это идеальная модель Земли, ввиду некоторых непреодолимых ограничений иногда его использование невозможно (даже если сам глобус сконструирован безупречно).
1. Глобусы хрупкие и объемные, поэтому их сложно хранить, перевозить, а иногда с ними неудобно работать.
2. Производство глобусов очень дорого (особенно это касается моделей большого размера), при этом они недостаточно удобны для изучения деталей.
3. На них сложно выполнять измерения и оценивать величины углов.
4. Глобус позволяет рассматривать только одно полушарие одновременно.
5. Изготовить печатную или электронную репродукцию части глобуса нельзя.
Равнопромежуточные проекции
В завершение этой главы мы расскажем еще об одной группе проекций, обладающих общими метрическими свойствами. Как мы уже говорили, каждый картограф мечтает о карте с постоянным масштабом (коэффициентом уменьшения), единственным искажением которой будет равномерное изменение размера. Однако мы доказали, что построить такую карту невозможно: масштаб любого изображения Земли на плоскости не является постоянным и отличается в разных точках и направлениях, поскольку любая картографическая проекция неизбежно вносит искажения. Тем не менее существуют проекции, в которых некоторое семейство кривых будет иметь постоянный масштаб, а их длина будет пропорциональна длине этих кривых, начерченных на поверхности Земли (такие кривые называются стандартными). Проекции, обладающие этим свойством, называются равнопромежуточными. Рассмотрим три примера проекций этой группы: цилиндрическую, азимутальную и коническую.
Цилиндрическая равнопромежуточная проекция
С математической точки зрения эта проекция тривиальна. В простейшем случае, когда линия касания проходит по экватору, широта и долгота точки интерпретируются как ее декартовы координаты (см. следующий рисунок). В равновеликой цилиндрической проекции Ламберта участки земной поверхности, расположенные на высоких широтах, словно сжимаются, в проекции Меркатора — расширяются, а в цилиндрической равнопромежуточной проекции все параллели равноудалены друг от друга. Вдоль меридианов и экватора масштаб остается постоянным (в этом случае сетка меридианов и параллелей будет квадратной: такая проекция носит название plate саrréе). Кроме того, искажения отсутствуют вдоль меридианов и любых двух параллелей, равноудаленных от экватора (такая проекция называется равнопрямоугольной). Авторство этой проекции обычно приписывают Эратосфену, хотя Птолемей указывает, что ее создал Марин Тирский примерно в 100 году н. э. Начиная с этого времени цилиндрическая равнопромежуточная проекция благодаря простоте построения использовалась весьма часто, особенно в навигации. Она очень удобна для составления карт городов и любых малых участков земной поверхности.
Эта проекция используется в простых картах мира и в картах регионов, не содержащих много географических данных. Однако для составления более или менее подробных карт эта проекция в XX веке практически не применяется. Геологическая служба США и другие агентства обычно используют ее для индексных карт, на которых схематично указываются различные карты, включенные в сборник или атлас, и страница, на которой они находятся.