My-library.info
Все категории

Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
226
Читать онлайн
Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики краткое содержание

Эдуардо Арройо - Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - описание и краткое содержание, автор Эдуардо Арройо, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики читать онлайн бесплатно

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики - читать книгу онлайн бесплатно, автор Эдуардо Арройо

W = Fd,

где — «работа» (от английского work), F — сила и d — расстояние.

Энергию можно определить как работу, проделанную телом при отсутствии трения. Например, вся работа, необходимая для перемещения коробки по ледовому катку (если предположить, что трение отсутствует), превращается в кинетическую энергию. Работа, необходимая для того, чтобы поднять коробку на крышу небоскреба, равна ее потенциальной энергии. Значит, энергия — это способность тела осуществлять работу. Эта простая формулировка дает нам инструмент для определения потенциальной энергии тела в любой ситуации: потенциальная энергия — это работа, необходимая для перемещения из одной точки в другую. Именно так математически выглядит выражение для расчета электрической и гравитационной потенциальной энергии.

* * *

Кажется, что любое тело движется так, будто хочет уменьшить свою потенциальную энергию. Например, камни всегда падают, а не движутся вверх. Более того: камень движется в область меньшей энергии по определенному пути, который позволяет ему потерять потенциальную энергию максимально быстро. Как показано на рисунке, камень будет следовать по прямой линии вниз: это самый короткий путь к нижней точке, в которой у него минимальная потенциальная энергия.



Различные пути, по которым камень мог бы достигнуть земли. Все они длиннее, чем его настоящий путь — самый короткий.


Великий математик Леонард Эйлер (1707–1783) использовал этот факт для формулировки новой версии принципа наименьшего действия; он предложил считать, что тела стремятся потерять потенциальную энергию с максимально возможной скоростью. Принцип Эйлера привел к современной идее о том, что система частиц всегда стремится к состоянию с наименьшей потенциальной энергией. Этот простой тезис способен объяснить магнетизм железа, структуру молекулы воды, а также помочь в изучении поведения газа при низких температурах.

Однако принцип Эйлера в своем первоначальном виде работал не везде. Если подбросить камень, он сначала получит потенциальную энергию, а лишь затем начнет ее терять. Кажется, что при определении траектории частицы на нее воздействует не только потенциальная энергия, но и кинетическая.

Окончательная формулировка принципа наименьшего действия принадлежит Лагранжу и Гамильтону. С одной стороны, эти ученые переформулировали принцип Эйлера таким образом, чтобы он работал во всех случаях. С другой стороны, Лагранж и Гамильтон разработали новые математические методы для решения уравнений, которые следуют из этого принципа.

Ими было введено математическое понятие, названное лагранжианом, которому, по иронии судьбы, определение дал Гамильтон. Лагранжиан — это просто разница между кинетической и потенциальной энергией. Если мы обозначим лагранжиан через L, кинетическую энергию — через Т, а потенциальную — через V, то лагранжиан можно вычислить следующим образом:

= T — V.

Значение лагранжиана различно для каждого промежутка времени движения частицы. В случае с камнем, брошенным вверх, его кинетическая энергия сначала уменьшается, пока не достигнет верхней точки, где становится нулевой, а затем снова увеличивается по мере того, как камень падает. Потенциальная энергия, в свою очередь, увеличивается, пока камень поднимается, а во время падения уменьшается.

* * *

ЖОЗЕФ ЛУИ ЛАГРАНЖ (1736–1813)

Он был одним из самых значительных математиков XVIII века. Среди заслуг Лагранжа — разработка вариационного исчисления, математического инструмента, позволяющего найти функцию, на которой заданный функционал достигает максимального или минимального значения. Методы Лагранжа до сих пор широко используются в физике, математике и даже в экономике, где найти максимальные значения некоторых величин, таких как выгода, очень важно. Помимо вклада в базовую науку, Лагранж стал одним из инициаторов внедрения метрической системы. Считается, что именно ему принадлежит идея выбрать килограмм и метр в качестве международных единиц.

Несмотря на закрытый характер, Лагранж пользовался большим признанием: он провел два десятилетия в Берлине, где Фридрих II Великий (1712–1786) регулярно обращался к нему за советами. После смерти монарха математик переехал в Париж, и его авторитет сохранился даже в период революции, в то время как другим ученым, таким как Антуан Лавуазье (1743–1794), повезло гораздо меньше. За два дня до смерти Лагранжа Наполеон наградил его Великим крестом имперского ордена Собрания. Похоронен ученый в Пантеоне, его могила открыта для посещений.



* * *

Лагранжиан можно вычислить в каждый промежуток времени, вычтя потенциальную энергию из кинетической. Все три случая показаны на графиках.





Этот математический объект оказался ключевым элементом, которого не хватало для дополнения принципа наименьшего действия, потому что его можно было использовать, имея в виду как кинетическую, так и потенциальную энергию. В новой формулировке утверждалось, что любое тело движется таким образом, что лагранжиан уменьшается как можно быстрее. За этой внешней простотой кроется удивительная способность прогнозировать движение любой классической системы, то есть любой системы, для описания которой нет необходимости прибегать к законам квантовой механики.

Кроме того, формула Лагранжа имеет еще два преимущества: во-первых, она подходит для любой системы координат, и это решило проблему уравнений Ньютона, применимых только для прямоугольной системы координат; во-вторых, эту формулу совершенно свободно можно применить к произвольному числу частиц.

Новая математика открыла для физиков новые возможности, поскольку теперь ученые уже не были ограничены изучением только простых систем, но могли обратить внимание на до сих пор не решенные задачи. Хотя формулировка Лагранжа соответствует законам Ньютона, на практике она позволяет максимально расширить действие этих законов. Изучение таких сложных систем, как газ, было бы невозможным без лагранжевой механики.

И все же, несмотря на всю свою важность, лагранжиан — это только инструмент, позволяющий узнать положение и скорость частицы. Следуя принципу наименьшего действия, траектория тела должна быть такой, чтобы лагранжиан уменьшался как можно быстрее. Но как найти эту траекторию? Одним из способов могло бы стать сравнение нескольких траекторий и выбор той, при которой лагранжиан уменьшается быстрее. К сожалению, количество существующих возможностей очень велико, и до изобретения компьютера не стоило и думать об этом методе. Для решения задачи Лагранжу пришлось воспользоваться вариационным исчислением — совершенно новым математическим инструментом.

Совместная работа Лагранжа и Эйлера привела ученых к открытию уравнений, известных сегодня как уравнения Эйлера — Лагранжа. Они сводят проблему нахождения наименьшего действия к решению системы дифференциальных уравнений, в которых неизвестное — это функция. Решение таких уравнений в XVIII веке было хорошо развито.

Можно представить метод Лагранжа следующим образом: берется некая траектория и слегка изменяется; затем исследуются похожие траектории и вычисляется, как уменьшается лагранжиан для всех них до тех пор, пока не находится подходящая траектория. На следующем графике можно наблюдать различные траектории частицы.



* * *

МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА ПРИНЦИПА НАИМЕНЬШЕГО ДЕЙСТВИЯ

Принцип наименьшего действия гласит, что тела движутся таким образом, что лагранжиан уменьшается как можно быстрее. Однако существует и более точная формулировка, основанная на такой величине, как действие.

Предположим, что мы знаем, как развивается лагранжиан частицы во времени. Сначала представим это развитие графически.



Действие определяется как область под кривой лагранжиана между исходным моментом (t) и конечным моментом (t1) движения за определенное время. То есть действие — это закрашенная на рисунке область.


Принцип наименьшего действия можно изложить следующим образом: тело движется так, что действие, связанное с его движением, минимально.

Вычисление площади под кривой может потребовать использования анализа бесконечно малых — области математики, разработанной независимо друг от друга Ньютоном и Лейбницем именно для решения физических задач.


Эдуардо Арройо читать все книги автора по порядку

Эдуардо Арройо - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики отзывы

Отзывы читателей о книге Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики, автор: Эдуардо Арройо. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.