My-library.info
Все категории

Морис Клайн - Математика. Утрата определенности.

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Морис Клайн - Математика. Утрата определенности.. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
236
Читать онлайн
Морис Клайн - Математика. Утрата определенности.

Морис Клайн - Математика. Утрата определенности. краткое содержание

Морис Клайн - Математика. Утрата определенности. - описание и краткое содержание, автор Морис Клайн, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Морис Клайн

Наиболее сильной критике истинность арифметики подверглась со стороны Германа Гельмгольца (1821-1894), выдающегося физиолога, физика и математика. В своей книге «Счет и измерение» (1887) Гельмгольц провозгласил основной проблемой арифметики, обоснование ее автоматической применимости к физическим явлениям. По мнению Гельмгольца, единственным критерием применимости законов арифметики мог быть опыт. Утверждать априори, что законы арифметики применимы в любой данной ситуации, невозможно.

По поводу применимости законов арифметики Гельмгольц высказал немало ценных замечаний. Само понятие числа заимствовано из опыта. Некоторые конкретные опыты приводят к обычным типам чисел: целым, дробным, иррациональным — и к свойствам этих чисел. Однако обычные числа применимы лишь именно к этим опытам. Мы сознаем, что существуют виртуально эквивалентные объекты, и тем самым сознаем, что можем говорить, например, о двух коровах. Но чтобы выражения подобного рода сохраняли силу, рассматриваемые объекты не должны исчезать, сливаться или претерпевать деление. Одна дождевая капля, если ее слить с другой дождевой каплей, вовсе не образует двух дождевых капель. Даже понятие равенства неприменимо автоматически к каждому опыту. Кажется несомненным, что если объект a равен объекту c, а объект b равен объекту c, то объект a должен быть равен объекту b. Но два звука могут казаться по высоте такими же, как третий звук, и все же мы в состоянии отличать на слух первые два звука. Следовательно, два объекта, порознь равные третьему, не обязательно должны быть равны между собой. Аналогично цвет a может казаться таким же, как цвет b, а цвет b — таким же, как цвет c, и все же цвет a иногда удается отличить от цвета c.

Много других примеров можно привести в подтверждение того, что наивное применение арифметики иногда давало нелепые результаты. Так, смешав два равных объема воды — один при температуре 40°C, другой при температуре 50°C, — мы не получим удвоенного объема при температуре 90°. Путем наложения двух гармонических тонов — одного с частотой 100 Гц, другого с частотой 200 Гц — мы не получим гармонический тон с частотой 300 Гц. В действительности составной тон будет иметь частоту 100 Гц. Соединив в электрической цепи параллельно два резистора с сопротивлениями R1 и R2, мы получим сопротивление величиной R1R2 / (R1 + R2), a не сопротивление R1 + R2. Как в шутку заметил некогда Анри Лебег (1875-1941), поместив в клетку льва и кролика, мы не обнаружим в ней позднее двух животных.

Из химии известно, что, смешивая водород и кислород, можно получить воду. Но если взять два объема водорода и один объем кислорода, то мы получим не три, а два объема водяного пара. Аналогично из одного объема азота и трех объемов водорода мы получим два объема аммиака. Физическое объяснение этой удивительной арифметики ныне известно. По закону Авогадро, в равных объемах любого газа при одинаковой температуре и одинаковом давлении содержится равное число частиц. Например, если в данном объеме кислорода содержится 10 молекул, то при той же температуре и том же давлении в равном объеме водорода содержится также 10 молекул. Следовательно, удвоенный объем водорода содержит 20 молекул. Известно, что молекулы кислорода и водорода двухатомны. Каждая из 20 двухатомных молекул водорода, соединяясь с одним атомом кислорода, образует молекулу воды. Так как всего имеется 10 молекул кислорода, то образуется 20 молекул воды, т.е. два, а не три объема. Таким образом, обычная арифметика не дает правильного описания того, что происходит при смешении газов, если подсчет производить по объемам.

Обычная арифметика не позволяет правильно описать и то, что происходит при смешении некоторых жидкостей. Если кварту джина смешать с квартой вермута, то получится чуть меньше двух кварт смеси. Смешав 1 л спирта с 1 л воды, мы получим 1,8 л спиртового раствора. То же справедливо и для большинства жидкостей, в состав которых входит спирт. Взяв столовую ложку, воды и столовую ложку соли, мы не получим две столовые ложки крепкого раствора соли. При смешивании некоторых химических веществ происходит взрыв — объем смеси заведомо не равен сумме объемов исходных веществ. 

Для описания многих физических ситуаций неприменимы не только свойства целых чисел — на практике нередко приходится прибегать к совсем иной арифметике дробных чисел. Рассмотрим, например, футбол, столь любимый миллионами болельщиков во всем мире.

Предположим, что в одной игре нападающий трижды пробил по воротам противника, а в другой игре — четыре раза. Сколько раз всего он бил по воротам противника? Подсчитать нетрудно: всего он бил по воротам противника 7 раз. Предположим, что в первой игре наш нападающий забил 2 гола, а во второй — 3 гола. Сколько голов он забил за две игры? И на этот раз ответ получить легко: за две игры он забил 2 + 3 = 5 голов. Но и болельщиков, и самого игрока обычно интересует средняя результативность, т.е. отношение числа забитых голов к числу ударов по воротам противника. В первой игре это отношение было равно 2/3, во второй — 3/4. Предположим, что нападающий или болельщик хочет по этим данным вычислить среднюю результативность за две игры. Некоторые полагают, что для этого необходимо лишь сложить оба отношения по обычным правилам сложения дробей, т.е. составить сумму: 

2/3 + 3/4 = 17/12.

Но полученный таким образом результат явно лишен всякого смысла: ни один нападающий за 12 ударов по воротам противника не может забить 17 голов! Ясно, что обычные правила сложения дробей непригодны для подсчета средней результативности: средняя результативность за две игры не совпадает с суммой средних результативностей, вычисленных для каждой из игр в отдельности. Каким же образом, зная результативность нападающего в каждой из двух игр в отдельности, правильно вычислить среднюю результативность за две игры? Для этого необходимо воспользоваться новым правилом сложения дробей. Мы знаем, что результативность нападающего по двум играм составляет 5/7, а в первой и во второй играх равна соответственно 2/3 и 3/4. Нетрудно видеть, что, сложив отдельно числители и знаменатели слагаемых, мы получим новую дробь, дающую правильный ответ: 

2/3  3/4 = 5/7.

(знак плюс, который мы не случайно обвели кружком, означает здесь, что числители и знаменатели суммируются отдельно).

Предложенное нами правило «сложения» дробей оказывается полезным и в других ситуациях. Продавец, ведущий учет эффективности своей торговли, может заметить, например, что в первый день покупки сделали 3 из 5 посетителей, а во второй день — 4 из 7. Чтобы вычислить эффективность торговли за два дня, т.е. найти отношение числа покупок к общему числу посетителей, продавец должен сложить 3/5 и 4/7 по тому же правилу, по которому нападающий вычислял свою результативность за две игры. За два дня покупки сделали 7 посетителей из 12, а 7/12 = 3/5 + 4/7, где знак плюс означает сложение отдельно числителей и отдельно знаменателей.

Еще чаще встречается другое применение нового правила сложения дробей. Предположим, что автомобиль проезжает 50 км за 2 ч и 100 км за 3 ч. С какой средней скоростью автомобиль покрывает оба отрезка пути? Можно было бы рассуждать так: расстояние 150 км автомобиль проезжает за 5 ч, поэтому его средняя скорость составляет 30 км/ч. Но часто бывает удобнее вычислять средние скорости всего пробега по средним скоростям на отдельных участках маршрута. Средняя скорость на первом участке равна (50/2) км/ч, а на втором — (100/3) км/ч. Сложив отдельно числители и знаменатели этих дробей, мы получим правильную среднюю скорость всего пробега.

В обычной арифметике 4/6 = 2/3. Но при сложении двух дробей по новому правилу, например при вычислении 2/3 + 3/5, дробь 2/3 не следует заменять дробью 4/6, так как ответ в одном случае равен 5/8, а в другом — 7/11, и эти два ответа оказываются различными. Кроме того, в обычной арифметике такие дроби, как 5/1 и 7/1, ведут себя также, как целые числа 5 и 7. Но если мы вздумаем сложить 5/1 и 7/1 как дроби, по правилам новой арифметики, то вместо 12/1 получим 12/2.

Приведенные примеры такой «футбольной арифметики» свидетельствуют об одном: вводя операции, отличные от привычных, мы тем не менее можем прийти к арифметике, применимой к реальному миру. Математике известны и многие другие арифметики. Однако ни один здравомыслящий математик не станет изобретать арифметику «просто так», для собственного удовольствия. Каждая арифметика предназначена для описания некоторого класса явлений физического мира. Производимые над числами операции выбираются с таким расчетом, чтобы они соответствовали выбранному классу явлений, подобно тому как в приведенных примерах необычное сложение дробей позволяло вычислять среднюю результативность, эффективность и скорость. Новая арифметика должна облегчать исследование реально происходящего. Только опыт может сказать нам, в каких случаях обычная арифметика применима к тому или иному физическому явлению. Следовательно, мы не можем рассматривать арифметику как свод истин, с необходимостью применимых для описания любых физических явлений. Разумеется, это же относится и к «продолжениям» арифметики — алгебре и математическому анализу. Их также нельзя считать сводом непреложных истин (см., например, [30]).


Морис Клайн читать все книги автора по порядку

Морис Клайн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Морис Клайн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.