Для неспециалистов поясним, что математический анализ обычно начинают преподавать в старших классах, затем он изучается в течение двух-трех лет практически на всех технических факультетах вузов.
* * *
ПРИНЯТИЕ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ
Большинство опросов, проведенных среди населения, показывают, что 50 % опрошенных не признают существования актуальной бесконечности. Интересно, что эта точка зрения не меняется с возрастом. Иногда случается так, что даже преподаватели, объясняющие студентам материал, для понимания которого актуальная бесконечность играет определяющую роль, лишь «следуют правилам игры», но в глубине души считают, что актуальная бесконечность как таковая не должна существовать.
* * *
Попытка включить теорию множеств в курс средней школы в рамках программы современной математики, по мнению многих преподавателей, оказалась неудачной.
Возможно, причина в том, что теория множеств представляет для математиков интерес в качестве теоретической базы, но сама по себе недостаточно широко применяется на практике. В результате большинство преподавателей ограничивались объяснением самых основ, в частности понятия принадлежности к множеству или включения множеств, которые интуитивно понятны и не требуют какого-то особого математического языка. Напротив, как вы увидите в следующих главах этой книги, понятие мощности множества (числа элементов множества) представляет особый интерес, особенно когда рассматривается мощность бесконечных множеств. В этом случае речь всегда идет об актуальной бесконечности, и возникает противоречие со здравым смыслом, так как в теории множеств рассматриваются множества, части которых равны целому. А ведь эту идею отверг еще Евклид в «Началах», категорически заявив, что «целое больше, чем его часть», и звучит это совершенно логично.
Еще одно противоречие возникает, когда выясняется, что ограниченные множества могут быть бесконечными, так как в нашем представлении бесконечность не имеет границ.
Как вы увидите далее, элементарная логика, или то, что порой называют интуицией, может обмануть, когда речь идет об актуальной бесконечности. Причина в том, что при рассмотрении некоторых понятий мы не до конца понимаем их и многое принимаем на веру. Трудности, возникающие у студентов-математиков при изучении актуальной бесконечности, сравнимы с трудностями, которые испытывают студенты-физики при изучении квантовой механики. Классический пример из квантовой механики выглядит так. Допустим, у нас есть ящик с двумя отверстиями, в котором находится шар. Если мы будем перемещать ящик произвольным образом, можно ожидать, что шар выпадет из него через одно из двух отверстий. При определенных перемещениях мы даже сможем вычислить вероятность того, что он выпадет через конкретное отверстие. Намного сложнее представить, что шар выпадет через оба отверстия одновременно. Но в квантовой физике такой вариант возможен, хотя он полностью противоречит интуиции. Речь не идет о том, чтобы понять это явление само по себе, так как всем известно, что означает: «шар выпадает через два отверстия сразу». Правильнее было бы сказать «я не верю» вместо «я не понимаю».
Нечто подобное происходит и с актуальной бесконечностью. Когда мы говорим, что крошечный отрезок прямой содержит бесконечное множество точек, мы понимаем, о чем идет речь. Другое дело, верим мы в это или нет.
* * *
«ИСЧИСЛЕНИЕ ПЕСЧИНОК» АРХИМЕДА
Слова для обозначения больших чисел (миллион, миллиард и т. д.) были введены французским математиком Никола Шюке (ок. 1445–1488) в 1484 году. Суффиксом — иллион он обозначал число М = 106 (в этой системе обозначений M1 — миллион, М2 — биллион, М3 — триллион и т. д.). В системах счисления древности очень большие числа обычно не рассматривались.
В древнегреческой системе счисления максимально возможным числом было 100 миллионов.
Архимед создал знаменитый трактат по арифметике под названием «Исчисление песчинок», в котором, помимо прочего, привел теоретические подсчеты общего числа песчинок на Земле. Его истинной целью было показать, что возможно создать систему счисления для подсчета объектов, которых, как может показаться, бесконечно много, но в действительности это не так.
Система Архимеда была основана на последовательных степенях мириады (Ω), равной 10000.
Максимально возможное число в этой системе счисления равнялось — это очень и очень большое число. Неизвестно, почему Архимед остановился именно на нем, хотя никто не мешал ему двигаться дальше.
Глава 2. Дискретное и непрерывное
Противопоставление дискретного и непрерывного, которому уделяли внимание многие мыслители, восходит к трудам древнегреческих философов и до сих пор применяется в столь разных науках, как физика, математика, психология и лингвистика.
Плотность
В великих культурах Античности, особенно древнегреческой, числам придавалось метафизическое значение. Видение мира было неразрывно связано с применявшейся системой счисления. В контексте нашего обсуждения под числами мы обычно будем понимать натуральный ряд 1,2,3, …, поскольку дроби в древности считались не числами в современном смысле слова, а лишь отношениями между величинами или отношениями подобия между геометрическими фигурами. Здесь необходимо прояснить один аспект, напрямую связанный с бесконечностью: если все сущее можно выразить с помощью чисел, их должно быть достаточно много, чтобы ими можно было обозначить все, что нам уже известно и что еще предстоит узнать.
В этом смысле последовательность натуральных чисел нас полностью устраивает, так как ее можно продолжать бесконечно. Тем не менее последовательность дробных чисел обладает свойством, которое отсутствует у целых чисел и к которому древнегреческие математики относились с долей недоверия, а именно плотностью.
Между двумя последовательными целыми числами не существует никаких других целых чисел. Например, между 6 и 7 «не поместится» никакое другое натуральное число, которое должно быть больше 6 и меньше 7. Однако если мы добавим к множеству натуральных чисел дробные числа, это правило перестанет выполняться. Так, число
будет находиться между 6 и 7.
Аналогичным образом можно найти число, расположенное между любыми другими двумя числами. Если даны два числа А и В, то обязательно будет выполняться соотношение
Однако для этого необходимо, чтобы последовательность чисел, с которой мы работаем, содержала дробные, или рациональные, числа.
Так как описанные выше действия можно повторять бесконечно, можно утверждать, что между двумя любыми рациональными числами всегда будет располагаться бесконечно много других рациональных чисел. Именно в этом и заключается свойство плотности, о котором мы говорим. Плотность делает бессмысленным понятие «следующего» числа. Говоря о множестве натуральных чисел, можно смело утверждать, что за числом 12 следует 13, однако на множестве рациональных чисел говорить о числе, следующем за N, не имеет смысла: если таким числом является М, то всегда существует число
идущее перед М.
Плотность отражает понятие бесконечности с непривычной стороны. Приведем пример из геометрии. Когда мы представляем себе прямую, мы считаем, что она продолжается бесконечно с обоих концов. В нашем представлении эта прямая бесконечно велика. Аналогом дробных чисел из предыдущего примера будут точки на отрезке прямой: между двумя точками всегда находится третья, и число точек отрезка также бесконечно велико.
Дискретное и непрерывное
Толковый словарь русского языка дает слову «дискретный» такое определение: «прерывистый, дробный, состоящий из отдельных частей», что схоже с определением дискретной величины в математике: «величина, принимающая конечное число отдельных значений, например число деревьев в лесу, число солдат в армии и пр.».
Как вы увидите чуть позже, упоминание «отдельных частей» отсылает нас к высшим разделам математики, так как нужно очень четко определить значение слова «отдельный», что сделать не так просто, как может показаться.
Чтобы лучше разобраться во всех тонкостях бесконечности (как бесконечно больших, так и бесконечно малых величин), нужно четко понимать значение понятий «непрерывное» и «дискретное». Рассмотрим разницу между ними на простом примере. Представьте себе два одинаковых сосуда, в одном из которых находится вода, а в другом — небольшие пластиковые шарики. Перельем содержимое первого сосуда в кувшин. Мы увидим, как течет жидкость и как постепенно уровень воды в кувшине поднимается. Если мы будем пересыпать в кувшин шарики, все будет выглядеть и восприниматься совершенно иначе: мы будем видеть, как шарики по одному падают в кувшин. Разница между первым и вторым случаем будет заметна не только на глаз, но и на слух: в первом случае звук будет непрерывным, во втором мы сможем различить звук, издаваемый каждым шариком при падении в кувшин.