Происхождение любой важной идеи всегда можно проследить, углубляясь в историю на десятилетия, если не на века. В полной мере это относится и к понятию функции. Тем не менее явный смысл понятие функций обрело лишь в XVII в. Мы не будем здесь вникать в подробности этого процесса. Для нас гораздо важнее другое: хотя понятие функции весьма «прямолинейно» и, казалось бы, не таит в себе никаких «подводных камней», но даже и простейшие функции охватывают все типы вещественных чисел. Так, в приведенном нами примере мы могли бы поинтересоваться значением dпри t = √2.Точно так же можно было бы спросить, чему равно t,когда dравно, скажем, 50: при d = 50,как нетрудно видеть, t = √(50/4,9), т.е. принимает иррациональноезначение. Но, как мы уже отмечали, в XVII в. понятие иррационального числа еще не получило должного истолкования. Следовательно, едва зародившейся теории функций явно недоставало логических обоснований, как не было их и у арифметики. Однако, поскольку к середине XVII в. математики привыкли свободно обращаться с иррациональными числами, на отсутствие таких обоснований никто не обращал внимания.
Две проблемы привлекали к себе внимание величайших математиков XVII в., наиболее известными среди которых были Кеплер (1571-1630), Декарт (1596-1650), Бонавентура Кавальери (1598-1647), Ферма (1601-1665), Блез Паскаль (1623-1662), Джеймс Грегори (1638-1675), Жиль Персон, называвший себя де Робервалем {76}(1602-1675), Христиан Гюйгенс (1629-1695), Исаак Барроу (1630-1677), Джон Валлис (1616-1703) и, конечно же, Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716). Каждый из этих ученых по-своему подошел к проблемам определения и вычисления производной и определенного интеграла. Одни из творцов дифференциального и интегрального исчисления рассуждали чисто геометрически, другие — чисто алгебраически, третьи использовали смешанный алгебро-геометрический подход. Нас будет интересовать, насколько создателям новых методов исчисления удалось приблизиться к образцам математической строгости. Для этого достаточно обратиться к нескольким наиболее типичным примерам, поскольку многие из предложенных методов были очень ограниченными и особого упоминания не заслуживают.
Природу производнойлегче всего понять, если представить ее как скорость(именно так поступил Ньютон). Если тело преодолевает расстояние 20 м за 4 с, то его средняя скорость равна 5 м/с, а если тело движется равномерно, то его средняя скорость на протяжении 4 с совпадает с мгновенной, т.е. со скоростью в любой данный момент. Однако движения чаще всего неравномерны. Тело, падающее на Землю, снаряд, вылетевший из пушки, планета, обращающаяся вокруг Солнца, — все движутся неравномерно: их скорость непрерывно меняется. Во многих случаях необходимо знать значения скорости движения в разные моменты времени. Например, жизненно важно знать, с какой скоростью пуля долетает до человека; если эта скорость близкак 0 м/с, то на землю упадет пуля, тогда как при скорости порядка 300 м/с на землю падает человек. По самому своему смыслу момент времени есть не что иное, как «нулевой промежуток» времени, а за нулевое время тело, разумеется, проходит равное нулю расстояние. Следовательно, если бы мы решили вычислять мгновенную скорость так, как вычисляют среднюю скорость, т.е. деля пройденное расстояние на требующееся для его прохождения время, то получили бы выражение 0/0, а такое отношение смысла не имеет.
Выход из создавшегося затруднения, который промелькнул в сознании математиков XVII в., но не был уяснен ими до конца, состоит в следующем. Предположим, что требуется вычислить скорость, которую приобретает свободно падающее тело ровно через 4 с после начала падения. Выбрав любой конечный промежуток времени (в отличие от нулевого промежутка — моментавремени), в течение которого тело падает, и разделив на него расстояние, пройденное телом за это время, мы получим среднюю скорость за выбранный промежуток времени. Вычислим теперь среднюю скорость за промежутки времени, следующие за 4-й секундой и имеющие продолжительность 1/ 2, 1/ 4, 1/ 8, … с. Ясно, что, чем меньше промежуток времени, тем ближе средняя скорость к мгновенной скорости тела через 4 с после начала падения. По-видимому, нам остается лишь вычислить средние скорости и посмотреть, к какой величине они стремятся.Эта величина и определяет мгновенную скорость, которой тело достигает к концу 4-й секунды свободного падения. Предложенная схема кажется достаточно разумной, хотя и таит в себе, как мы увидим в дальнейшем, некоторые сложности. Как бы то ни было, скорость к концу 4-й секунды свободного падения, если она вычислима, называется производнойфункции d = 4,9t 2при t = 4.
Трудности, связанные с определением производной, станут более понятными, если от словесного описания производной перейти на язык символов. Математическое определение производной, которое, по существу, и было в конце концов принято, принадлежит Ферма. Вычислим скорость, приобретаемую через 4 с после начала свободного падения мячом, движение которого описывается функцией
При t = 4получаем: d= 4,9∙4 2= 78,4 м. Пусть h— приращение времени. За время (t + h)с мяч пролетит в свободном падении расстояние 78,4 м плюс некоторое дополнительное расстояние k.Следовательно,
78,4 + k= 4,9 (4 + h) 2= 4,9(16 + 8 h + h 2),
или
78,4 + k= 78,4 + 39,2 h + 4,9 h 2.
Вычтем из правой и левой частей последнего равенства по 78,4:
Итак, средняя скорость за время hс свободного падения равна
k/h= (39,2 h + 4,9 h 2)/h. (2)
При рассмотрении этой простой функции и других функций Ферма повезло: числитель и знаменатель правой части ему удалось разделить на h,получив
Затем Ферма положил приращение hравным нулю и получил, что скорость тела через 4 с после начала свободного падения такова:
(d ∙— обозначение производной, предложенное Ньютоном). Итак, d ∙— производная от d = 4,9t 2при t = 4.
Против предложенного Ферма метода вычисления производной можно возразить, указав, что приращение hдолжно быть отлично от нуля, ибо выполнение таких операций, как деление числителя и знаменателя на h,возможно только при h,отличном от нуля. Но тогда и равенство (3) справедливо только при h,отличном от нуля. Следовательно, мы не можем полагать в (3) значение hравным нулю и делать из этого предположения какие бы то ни было выводы. Кроме того, в случае такой простой функции, как d = 4,9t 2,соотношение (2) после сокращения правой части на hпереходит в соотношение (3). В случае же более сложных функций нам пришлось бы иметь дело с выражением типа (2). При h = 0правая часть (2), выражающая предельное значение средней скорости k/h,обращается в неопределенность 0/0.
Ферма никогда не занимался обоснованием своего метода, и, хотя он по праву может быть назван одним из создателей математического анализа, ему не удалось продвинуться здесь особенно далеко. Он был достаточно осторожен, чтобы пытаться формулировать общие теоремы, если сознавал, что какая-либо идея не обоснована им полностью. {77}Ферма довольствовался тем, что предложил правильный алгоритм, которому смог дать геометрическую интерпретацию, и надеялся, что когда-нибудь удастся найти полное геометрическое обоснование предложенного им метода.