My-library.info
Все категории

Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе. Жанр: Математика издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Мир математики. Том 16. Обман чувств. Наука о перспективе
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
132
Читать онлайн
Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе

Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе краткое содержание

Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе - описание и краткое содержание, автор Франсиско Мартин Касальдеррей, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.

Мир математики. Том 16. Обман чувств. Наука о перспективе читать онлайн бесплатно

Мир математики. Том 16. Обман чувств. Наука о перспективе - читать книгу онлайн бесплатно, автор Франсиско Мартин Касальдеррей

Кроме того, он указывает способы представления различных плоских фигур в перспективе. Для этого он вписывает эти фигуры в квадрат и использует так называемый метод точек схода. Попробуем вкратце объяснить этот метод.



Диагонали квадратов, на которые разделен пол, сходятся в так называемой точке схода — точке Q.

(источник: FMC)


Все горизонтальные линии, параллельные между собой, вне зависимости от их положения в пространстве сходятся в перспективе в одной точке на линии горизонта. Если эти линии образуют с картинной плоскостью угол в 45°, как, например, диагонали квадратов, на которые разделен пол, изображенных на предыдущем рисунке, то точка схода этих линий будет находиться на определенном расстоянии от центра перспективы О'. Это расстояние будет равно расстоянию d от наблюдателя до картинной плоскости. Эта точка Q называется точкой схода. Очевидно, что на линии горизонта будут расположены две точки схода: одна справа от центра перспективы, другая слева.

Этот метод Пьеро делла Франческа описал в своей книге «О перспективе в живописи» так, как показано ниже:



Метод точек схода, описанный Пьеро делла Франческа.

(источник: FMC)


Допустим, нужно представить в перспективе квадрат со стороной АВ, зная, на какой высоте от АВ находится точка зрения О', и расстояние d от нее до картинной плоскости. Для этого нужно провести через точку О', прямую, параллельную АВ, и продолжить ее до точки О, расположенной на расстоянии d от точки О'. Из точки О проведем линию в точку В, которая пересечет отрезок АО' в точке D'. И наконец, проведем через D' прямую, параллельную АВ, которая пересечет ВО' в точке С. ABC'D' будет перспективным изображением ABCD.


Дюрер и метод диагоналей

Пьеро делла Франческа также описал метод для определения положения любой точки квадрата в перспективе. Этот метод, который известен под названием метода диагоналей, впоследствии изложил Альбрехт Дюрер в своей книге «Руководство к измерению циркулем и линейкой». Процитируем фрагмент этой книги Дюрера:

«Когда ты хочешь представить на плоскости, видимой в перспективе, данную точку квадрата, проследуй так: начерти квадрат ABCD так, чтобы АВ была верхней горизонтальной его стороной. Нарисуй квадрат в перспективе, ABGF, лежащий на нем. Пусть О будет точкой взгляда на твой рисунок. Выбери любую точку Е квадрата. Далее проведи диагональ АС этого квадрата.

Нарисуй ту же диагональ BF в квадрате, изображенном в перспективе. Затем проведи из точки Е параллельную к стороне квадрата и продли ее до горизонтали АВ. Обозначь эту точку Н. Проведи из этой точки Н прямую линию в точку взгляда О, которая пересечет квадрат, изображенный в перспективе.

Она пересечет горизональ FG в некоторой точке. Обозначь эту точку М. Затем проведи в квадрате прямую, параллельную АВ, через точку Е до диагонали АС. Обозначь эту точку J. Проведи теперь через J параллельную стороне квадрата до АВ и обозначь эту точку К. В квадрате, изображенном в перспективе, проведи через К прямую до точки О, которая пересечет диагональ FB в точке L. И наконец, проведи из точки L горизонталь, параллельную АВ, до линии НМ. Обозначь эту точку N. Это и будет искомая точка в квадрате, изображенном в перспективе, что можно видеть на рисунке, который я изобразил ниже».



Метод диагонали, описанный Дюрером, для изображения точки в перспективе.

(источник: FMC)


Устройства Дюрера для рисования в перспективе

В двух изданиях «Руководства к измерению циркулем и линейкой» Дюрер описал механические устройства, упрощающие рисование в перспективе. В первом издании от 1525 года упоминаются два приспособления. Они изображены на гравюрах «Портретист» и «Художник, рисующий лютню». В издании от 1538 года, отпечатанном после смерти художника, упоминаются еще два устройства, изображенные на гравюрах «Художник, рисующий кувшин» и «Техника рисования в ракурсе». Некоторые из них уже были известны таким художникам, как Донато Браманте или Альберти. Устройство, изображенное на гравюре «Художник, рисующий лютню», возможно, было изобретено самим Дюрером, который привел инструкции по его постройке.



На гравюре «Художник, рисующий лютню» изображено одно из устройств Дюрера для рисования в перспективе.


Принцип действия этого устройства таков: на поверхности стола размещалась метка, которая играла роль окна в методе Альберти. Единственную створку этого окна можно было поворачивать в сторону. Художник располагался перед открытым окном. За ним на стене была укреплена петля, через которую проходил шнур. Этой петлей отмечалась точка зрения, или глаз наблюдателя в терминологии Пьеро делла Франческа. На висящем конце шнура крепился груз. Другой конец шнура привязывался к подобию указки или большого гвоздя, которое держал в руках помощник.

Шнур натягивался под действием груза, закрепленного на другом конце. Шнур, поддерживаемый помощником, проходил через окно. Помощник обозначал указкой различные точки на предмете, который хотел изобразить (в данном случае лютню), следуя указаниям художника. На раме закреплялись две нити: одна в середине верхней стороны, другая в середине одной из боковых сторон. Художник пересекал эти нити в точке, в которой шнур проходил через окно, и крепил их воском на противоположной стороне рамы. Убрав шнур, поддерживаемый помощником, художник закрывал створку окна и отмечал на бумаге точку пересечения нитей. Таким образом он получал контур изображаемого предмета, составленный из множества точек. Затем эти точки соединялись, и получалось изображение в перспективе.

* * *

ДЮРЕР. БЕССМЕРТНЫЙ ВЗГЛЯД

Немецкий гравер, художник и писатель Альбрехт Дюрер (1471–1528) был одним из ярчайших представителей немецкого Возрождения. Он родился в Нюрнберге. В семье было 18 детей, из которых выжило только трое. Его первым учителем стал отец, ювелир венгерского происхождения. В 14 лет Дюрер поступил на должность подмастерья в мастерскую художника и гравера Михаэля Вольгемута, где проработал четыре года. Он много путешествовал и объехал всю центральную Европу в поисках работы, не прекращая учиться. В 1494 году, вернувшись в Нюрнберг, он женился и открыл собственную мастерскую. Затем он совершил путешествие в Италию, где познакомился с новым стилем, формировавшимся в то время.

Несмотря на то что его обучили в духе поздней готики и фламандского стиля, во время пребывания в Италии он впитал основы стиля итальянского Возрождения. Возможно, именно там в нем пробудился интерес к геометрии и математике.

Вернувшись в Нюрнберг, Дюрер начал систематически заниматься математикой в местном кружке под руководством Виллибальда Пиркгеймера. Он вернулся в Италию в 1505–1507 годах, на этот раз не столько для того, чтобы продолжить обучение, сколько для того, чтобы заявить о себе как о художнике. Вернувшись в родной город, он, помимо других работ, создал «Мученичество десяти тысяч христиан», где применил методы работы с цветом, изученные в Венеции.

В 1512 году он был назван придворным художником императора Максимилиана I и Карла V и получил пожизненную пенсию. Последние годы жизни он посвятил написанию теоретической работы «Четыре книги о пропорциях», опубликованной в 1525 году.

Дюрер умер 6 апреля 1528 года. Его друг Пиркгеймер написал в эпитафии: «То, что было смертным в Альбрехте Дюрере, покоится под этим холмом».



Альбрехт Дюрер. Автопортрет. Музей Прадо, Мадрид.

* * *

Этот метод был очень трудоемким и излишне механическим, однако с его помощью художник мог наглядно увидеть пересечение различных линий воображаемой пирамиды с картинной плоскостью, которой соответствовали окно и лист бумаги. Точка зрения располагалась не в глазу наблюдателя, а в точке позади него, куда художник затем вешал петлю.

Ниже вы можете видеть гравюры Дюрера, на которых изображены его устройства для рисования в перспективе.


Франсиско Мартин Касальдеррей читать все книги автора по порядку

Франсиско Мартин Касальдеррей - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Мир математики. Том 16. Обман чувств. Наука о перспективе отзывы

Отзывы читателей о книге Мир математики. Том 16. Обман чувств. Наука о перспективе, автор: Франсиско Мартин Касальдеррей. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.