- Это замечательно! - воскликнул Илюша. - Только я не пойму: к какой кривой приводит тот или иной закон физики?
- Видишь ли, когда этим занялся Исаак Ньютон, которого современники называли "счастливейшим из смертных" за его открытие закона всемирного тяготения, то он, изучая скорость, с которой изменяются ординаты данной кривой, поставил два чрезвычайно важных и вполне естественных вопроса.
Он рассуждал так: если точка двигается с данной скоростью, это значит, что она в определенное время проходит некоторый путь. Будем называть икс временем, как это делал сам Ньютон. Тогда ординаты кривой дают нам пройденный путь.
- 341 -
Вот, например, если поезд идет с постоянной скоростью сорок километров в час, то за десять часов он пройдет 10-40 = 400 километров. Алгебраически это будет: скорость равна а, время равно х, пройденный путь у равен ах. Таким образом, уравнение пути будет у = ах. Это есть не что иное, как уравнение прямой линии. Если же скорость сама все время меняется пропорционально времени, то пройденный путь будет на чертеже изображаться не ординатой прямой, а ординатой параболы. Если же мы умеем построить к нашей кривой пройденного пути касательную, то тем самым можем определить скорость в каждой данной точке кривой или в любой момент времени. Таким образом, зная пройденный путь, мы находим скорость. Но можно поставить и обратную задачу; зная скорость, найти пройденный путь. Можно показать, что эта задача сводится к квадратуре кривой, то есть к определению ее площади, а это, как уже мы с тобой говорили, есть задача интегрирования. Так вот, таким путем Ньютон и выяснил, что нахождение касательной и определение площади суть действия, обратные друг другу, как обратны, например, возведение в степень и извлечение корня.
- Так вот, оказывается, как! - воскликнул Илюша.
- Допустим, - продолжал Радикс, - что нам дано уравнение, которое показывает, какой скоростью обладает в каждый данный момент движущееся тело. Если мы сумеем сложить одну за другой все эти данные кривой моментальные скорости и получить их так называемую "начетную" кривую, то она и будет кривой пройденного пути.
Могу тебе это показать на простеньком примере. Это не будет ни дифференцирование, ни интегрирование, но нечто очень похожее на то и на другое.
Пусть некоторое тело движется с постоянным ускорением, равным двум сантиметрам в секунду, и пусть его средняя скорость в первую секунду равняется трем сантиметрам, а до этой секунды оно уже прошло один сантиметр. Требуется найти кривую пройденного пути. В таком случае нетрудно составить табличку. Кривая пройденного пути есть начетная кривая, то есть каждое число ее равно сумме всех предыдущих чисел кривой скорости, и, как легко заметить, она есть не что иное, как кривая квадратов натуральных чисел, то есть...
- 342 -
- Парабола! - ответил Илюша.
- Правильно! А наша кривая скоростей - это что, по-твоему?
- Это кривая нечетных чисел, то есть прямая.
- Верно!
- Я уже знаю, - продолжал Илюша, - что если складывать нечетные числа одно за другим, то получатся квадраты.
- Это правило было известно еще в древнем Вавилоне.
Опираясь на него, Галилей и открыл, что падающие тела движутся по параболе.
- А если интегрировать линейную функцию, которая дает прямую, то получишь на чертеже параболу, - добавил Илюша.
- Вот и еще одно свойство параболы.
- И обратно, если искать производную от правой части уравнения, то получишь функцию, изображаемую на графике прямой линией. А что получится, если интегрировать уравнение параболы?
- Параболу третьего порядка, кубическую, и так далее.
Но мы не будем останавливаться на этом, а поговорим об открытии Ньютона. Причем принцип, о котором мы говорим, был известен еще учителю Ньютона, замечательному английскому математику Барроу, однако значение этого принципа не было еще тогда ясно. Это было одно из самых удивительных открытий в математике. Но, мало этого, в дальнейшем выяснились еще более поразительные вещи. Оказалось, что в большинстве случаев закон изменения для бесконечно малых частиц кривой вообще гораздо проще, чем для конечных изменений! Кривая скоростей, как мы только что видели, проще кривой пройденного пути. В физике мы, изучая плотность неоднородного тела, из тех же соображений можем принимать, что в некотором неограниченном уменьшающемся кубике плотность эта остается постоянной. То же самое возможно при изучении распределения тепловой или электрической энергии, количества истекшей из сосуда жидкости и так далее.
- 343 -
Если, например, надо вычислить длину дуги кривой, то рассматривают бесконечно малые отрезки дуги. А для бесконечно малых отрезков дуги можно считать, что на таком ничтожно малом отрезке кривая идет по прямой. А если так, то на бесконечно малом отрезке кривой строим прямоугольный треугольник, катетами которого будут бесконечно малые приращения икса и игрека, а гипотенузой - крохотный отрезок прямой, которым в бесконечно малом заменяют отрезочек дуги. Но гипотенузу прямоугольного треугольника можно получить по теореме Пифагора, а дальше надо только сложить все эти бесконечно малые гипотенузочки, и получится в пределе точная длина кривой. Опыт показывает, что это путь правильный!
Так как с первого взгляда все-таки довольно трудно понять, как это возможно, заменяя маленькую дугу отрезком прямой, прийти к правильным результатам, я приведу тебе одно очень полезное рассуждение Ньютона, которое называют микроскопом Ньютона. Допустим, что когда мы начертим все это, то катет АС равен двадцати пяти сантиметрам.
Теперь я уменьшаю величину АС в миллион раз.
Уменьшение это касается только самого треугольничка, то есть его катетов и гипотенузы, а дуга как была, так и остается.
При вычислении длины кривой дуга ADB заменяется прямой АВ, которую легко определить:
AB = √[(AC)2 + (BC)2]
Если уменьшать катеты треугольника ABC и считать их бесконечно малыми, то можно вычислить длину кривой, которая будет равна пределу суммы таких бесконечно малых гипотенуз.
Очевидно, что при этом точка В будет просто скользить по измеряемой дуге. Итак, я уменьшил треугольник. А теперь я опять его увеличиваю на этот раз вместе с участком дуги снова в миллион раз, и он снова равен двадцати пяти сантиметрам. Но зато сама дуга, а ведь она-то нас больше всего интересует, теперь уже гораздо больше похожа на гипотенузу. Их еле можно отличить друг от друга. И снова я уменьшаю полученный треугольник, но на этот раз в миллион миллионов раз, а затем опять увеличиваю так, чтобы катет АС был равен двадцати пяти сантиметрам. Теперь уже ясно видно, что дуга и гипотенуза слились воедино и отличить их друг от друга невозможно. Так как ясно, что этот процесс уменьшения и рассматривания в новый, еще более сильный "микроскоп" я могу повторять столько раз, сколько мне заблагорассудится, то очевидно, что мы, уменьшая размеры приращений, можем приблизиться с нашим отрезком прямой сколь угодно близко к искомой длине дуги... Теперь начинается самое значительное и самое интересное. Слушай внимательно! Если ты изучаешь некий физический закон и не можешь его из-за сложности формулировать...
- 344 -
В это время сзади Илюши раздалось робкое, однако настойчивое покашливание. Мальчик обернулся и увидел маленького старичка с бородой, в темных очках. Он вежливо приподнял шляпу и сказал:
- Надеюсь, что не помешал... Очень хотел бы... Меня зовут Зазубрилкин Фиолет Чернилыч. Я хотел поделиться с вами одним моим открытием. Очень упрощает прохождение курса алгебры и геометрии... Разрешите изложить?
- Пожалуйста, - ответил Илюша.
- Открытие мое, конечно, пустяковое, - произнес Фиолет Чернилыч. - Мне удалось показать, что сторона квадрата совершенно рационально выражается через его диагональ, и обратно.
- Как так? - удивился Илюша.
- Я, видите ли, сам сперва удивлялся, как это выходит, по потом убедился, что так и есть. Тут дело только в том, чтобы рассудить насчет бесконечности. Конечно, это штука довольно хитрая, но. ведь все-таки длину окружности кое-как, на троечку, вычисляем, сумму уплывающей гомерической процессии тоже...
Илюша, не веря углам своим, хотел было переспросить, о какой собственно процессии идет речь. Но тут уж Фиолет Чернилыч достал из кармана мел, нарисовал квадрат, затем провел диагональ и приосанился (и в этот миг вдруг напомнил Илюше одного странного старичка, с которым он встретился в Схолии Шестой).
- Так вот-с, - начал он излагать свою теорию, - вместо того, чтобы идти от А к С по диагонали, я пойду от А к В, а от В к С. Затем от А к В1, затем к В2, потом к В3, а оттуда к С. Ясно, что второй мой путь равен первому, то есть движению от А к В и затем к С. Если сторона квадрата равна единице, то этот путь равен двум. Ясно! Теперь я пойду от А к С через точки B'1, B'2, B'3, B2, B'4, B'5 и B'6.