My-library.info
Все категории

Математика. Утрата определенности. - Клайн Морис

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Математика. Утрата определенности. - Клайн Морис. Жанр: Математика год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Математика. Утрата определенности.
Дата добавления:
17 сентябрь 2020
Количество просмотров:
153
Читать онлайн
Математика. Утрата определенности. - Клайн Морис

Математика. Утрата определенности. - Клайн Морис краткое содержание

Математика. Утрата определенности. - Клайн Морис - описание и краткое содержание, автор Клайн Морис, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Математика. Утрата определенности. читать онлайн бесплатно

Математика. Утрата определенности. - читать книгу онлайн бесплатно, автор Клайн Морис

Причину споров, которые породила теория множеств, очень тонко и точно охарактеризовал Феликс Хаусдорф в «Основаниях теории множеств» (1914). {102}Теорию множеств он метко назвал «областью, где ничто не является очевидным, где истинные утверждения нередко звучат парадоксально, а правдоподобные зачастую оказываются ложными».

Большинство математиков были обеспокоены вытекавшими из теории Кантора следствиями по совершенно иной причине, нежели приемлемость или неприемлемость бесконечных множеств различной мощности. Противоречия, вскрытые Кантором при попытке сопоставить (трансфинитное) число множеству всех множеств и множеству всех ординальных чисел, заставили математиков осознать, что они используют аналогичные понятия не только в новых, но и в, казалось бы, хорошо обоснованных традиционных областях математики. Обнаруженные противоречия математики предпочитали называть парадоксами, так как парадокс может быть объяснен, а математиков не покидала надежда, что все встретившиеся трудности им в конце концов удастся разрешить. (В наше время то, что раньше называли парадоксами, чаще называют «антиномии».)

Приведем некоторые из парадоксов. Нематематическим примером парадоксов теории множеств может служить высказывание «Из всех правил имеются исключения». Само это высказывание является правилом. Следовательно, для него можно найти по крайней мере одно исключение. Но это означает, что существует правило, не имеющее ни одного исключения. Такого рода высказывания содержат ссылку на самих себя и отрицают самих себя.

Наибольшей известностью из нематематических парадоксов пользуется так называемый парадокс лжеца.Его разбирали Аристотель и многие другие логики, жившие позднее. В классическом варианте парадокса лжеца речь идет о высказывании «Это утверждение ложно». Обозначим предложение, стоящее в кавычках, через S. Если Sистинно, то истинно то, что оно утверждает. Следовательно, Sложно. Если Sложно, то ложно то, что оно утверждает. Следовательно, Sистинно.

Парадокс лжеца существует во многих вариантах. Например, комментируя какое-то свое высказывание, человек может заметить: «Все, что я говорю, — ложь». Является ли высказывание «Все, что я говорю, — ложь» истинным или ложным? Если человек действительно лжет, то, утверждая, что он лжет, он говорит правду, а если человек говорит правду, то, утверждая, что он лжет, он действительно лжет. В некоторых вариантах парадокса лжеца ссылка на себя менее очевидна. Так, два высказывания: «Следующее за этим утверждение ложно», «предыдущее утверждение истинно» — содержат противоречие, так как если второе утверждение истинно, то тогда заведомо ложно первое утверждение, сообщающее нам о том, что второе утверждение ложно. Если же второе утверждение, как и говорится в первом утверждении, ложно, то значит, первое утверждение ложно и, следовательно, второе утверждение должно быть истинным.

Курту Гёделю (1906-1978), величайшему логику XX в., принадлежит несколько иной вариант парадокса с противоречивыми высказываниями, 4 мая 1934 г.  Aпроизносит единственную фразу: «Любое высказывание, которое  Aсделает 4 мая 1934 г., ложно». Это высказывание не может быть истинным, так как утверждает о самом себе, что оно ложно. Но оно не может быть и ложным, так как, для того чтобы оно было ложным,  Aдолжен был бы высказать 4 мая 1934 г. хоть одну истину, — а  Aсказал в этот день лишь одну фразу.

Первые математические противоречия, чреватые серьезными неприятностями, обнаружил Бертран Рассел и сообщил о них Готлобу Фреге в 1902 г. Фреге в то время занимался подготовкой к печати второго тома «Основных законов арифметики», в котором изложил новый подход к обоснованию числовой системы. (Подробнее о развитом Фреге подходе мы расскажем в следующей главе.) Свой подход Фреге в значительной мере основывал на теории множеств, или классов, — той самой теории, где Рассел обнаружил противоречие, о котором сообщил в письме Фреге и поведал математическому миру в книге «Принципы математики» (1903). Рассел занимался изучением парадокса Кантора о множестве всех множеств — и предложил свой вариант этого парадокса.

Парадокс Рассела относится к классам. Класс книг не является книгой и поэтому не содержит самого себя, но класс идей есть идея и содержит сам себя. Каталог каталогов — каталог. Следовательно, одни классы содержат (или включают) самих себя, другие не содержат. Пусть N— класс классов, не содержащих самих себя. К какой разновидности классов принадлежит N? Если Nпринадлежит N,то, по определению, Nне должен принадлежать N.Если же Nне принадлежит N,то по определению Nдолжен принадлежать N.Когда Рассел впервые открыл это противоречие, он решил, что трудность здесь кроется в логике, а не в самой математике. Но обнаруженное противоречие ставит под удар само понятие множества, или классаобъектов, широко используемое во всей математике. По словам Гильберта, парадокс Рассела был воспринят математическим миром как катастрофа.

В 1918 г. Рассел предложил популярный вариант своей антиномии, получивший название парадокс брадобрея.Один деревенский брадобрей объявил, что он бреет всех жителей деревни, которые не бреются сами, но, разумеется, не бреет тех жителей, которые бреются сами. Брадобрей похвалялся, что в парикмахерском деле ему нет равных, но однажды задумался над вопросом, должен ли он брить самого себя. Если он не бреется сам, то первая половина его утверждения (а именно та, в которой говорится, что брадобрей бреет всех, кто не бреется сам) требует, чтобы он самого себя брил. Но если брадобрей бреется сам, то вторая половина его утверждения (та, в которой говорится, что всех тех, кто бреется сам, он не бреет), требует, чтобы он самого себя не брил. Таким образом, брадобрей оказался в безвыходном положении — он не мог ни брить себя, ни не брить.

Другой парадокс, дающий представление о тех трудностях, с которыми столкнулись математики, был впервые сформулирован в 1908 г. математиками Куртом Греллингом (1886-1941) и Леонардом Нельсоном (1882-1927). Этот парадокс относится к прилагательным, описывающим самих себя и не описывающим самих себя. Такие прилагательные, как, например, «короткий» (-ая, -ое, -ие) или «русский» (-ая, -ое, -ие) описывают самих себя, т.е. применимы к себе, в то время как прилагательные «длинный» или «французский» к себе неприменимы (ведь прилагательное «длинный» вовсе не является длинным, а прилагательное «французский», конечно, русское, а не французское). Аналогично прилагательное «многосложное» является многосложным, но прилагательное «односложное» односложным не является. Назовем прилагательные, применимые к самим себе, автологическими,а прилагательные, неприменимые к самим себе, — гетерологическими.Если прилагательное «гетерологический» гетерологично, то оно применимо к самому себе и, следовательно, автологично. Если прилагательное «гетерологический» автологично, то оно не гетерологично. Но автологичное прилагательное по определению применимо к самому себе. Следовательно, прилагательное «гетерологический» гетерологично. Таким образом, какое бы допущение мы ни приняли, оно неизменно приводит к противоречию. В символической записи парадокс Греллинга — Нельсона гласит:  xгетерологичен, если  xесть «не x».

В 1905 г. Жюль Ришар (1862-1956), используя тот же метод, которым Кантор доказал, что вещественных чисел больше, чем целых, изобрел еще один «парадокс». Рассуждения Ришара довольно сложны, но противоречие, к которому он приходит, в упрощенном варианте содержится в парадоксе, о котором Дж.Дж. Берри из Бодлеанской библиотеки сообщил Бертрану Расселу (Рассел опубликовал этот парадокс в 1906 г.). Парадокс Берри получил название парадокса слов.Каждое целое число допускает множество различных словесных описаний. Например, число «пять» можно задать одним словом «пять» или фразой «число, следующее за числом четыре». Рассмотрим теперь все возможные описания, состоящие не более чем из 100 букв русского алфавита. Таких описаний не больше чем 33 100; поэтому существует лишь конечное множество целых чисел (не большее чем 33 100), задаваемых всеми возможными описаниями. {103}Следовательно, существуют какие-то целые числа, не задаваемые описаниями, состоящими не более чем из 100 букв. Рассмотрим «наименьшее число, не задаваемое описанием, которое содержит не более ста букв». Но мы только что привели описание такого числа, содержащее менее 100 букв (оно содержит всего 65 букв).


Клайн Морис читать все книги автора по порядку

Клайн Морис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Математика. Утрата определенности. отзывы

Отзывы читателей о книге Математика. Утрата определенности., автор: Клайн Морис. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.